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1. LECTURE 1. JAN 7TH. SCRIBE KATIE

1.1. Metric Spaces: Definitions, Examples, and Invariants.

Definition 1.1 (metric space). A metric space is a pair (X,dy) where X is a set and
dx : X x X — R, such that

(1) dx(z,2") = dx(2',2) V z,2" € X.
(2) dx(z,2") =0, with dx(z,2') =0 < z =2
(3) dx(z,2') +dx (2, 2") = dx(z,2") ¥ z,2', 2" € X. (triangle inequality, denoted A; in
this lecture)
Example 1.2. Examples of Metric Spaces:
(1) (R, ), (R [-]])
(2) ultrametric spaces (UMS)
(3) tree metric spaces (TMS)

Definition 1.3 (ultrametric space). (X, ux) metric is called ultrametric if it satisfies a strong
triangle inequality (denoted by A, in this lecture):

max(uy (z, z'), ux (2, 2")) = ux(z,2") for all z,2’, 2" € X.
Exercise 1.4. A, — A;.

Definition 1.5 (tree metric space). Finite metric space (X, dx) is a tree metric space <=
it satisfies the 4-point condition:
max(dx(xl, IQ) + dx(ZL'g, I4)7 dx(l‘g, ZL’g) + dx(Il, 374)) = dx(l‘l, 1'3) + dx(IQ, 1'4).

Exercise 1.6. Finite (X, uy) is a UMS = it is a TMS.

Intuition: TMS are “simple” in the sense that there is a “TREE” underneath = can draw
them.

Goal: Measure failure to be a UMS/TMS.

Relaxation of being ultrametric — ultrametricity.

Definition 1.7 (ultrametricity). Let (X, dx) be any metric space. Define the ultrametricity
of X to be ult(X) = inf{§ > 0|V, 2’, 2" € X, + max(dx(z,2'),dx(2',2")) = dx(z,2")}.

Question: Suppose that metric space (X,dx) has ult(X) = § < c0. Does there exist an
ultrametric uyx on X “close to dx”?

Theorem 1.8 (Gromov, 1980s). Given (X, dx) finite m.s. with ult(X) = ¢, there exists ux
ultrametric on X such that ||dx — ux||e < ¢+ 0 -log(|X|) for some constant c.

Definition 1.9 (single linkage map). Define the single linkage map H from a finite metric
space to a finite ultrametric space as follows:
For a finite metric space (X, dyx), write H(X,dx) = (X, ux),
where ux(z,2’) = min{max dx(x;, z;41), all xo,z1,...,2,} for z,2’ € X.
’ I

I
T 2
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Claim 1.10. uy is a legit ultrametric on X.

Proof of Claim: Need to prove that for every z,2', 2" € X,
max(uy (x, "), ux(z',2")) = ux(x,z"). Take sequences

T, L1, ..oy Ty & max dx(xi, xip1) = ux(x, ), To,T1, .00y T & max dx (T, Tip1) = ux (2, 2").
I I I I

x .T/ .T/ ‘,I/Jl

Let 29, 21, ..., v be the concatenation of both sequences. Then max dx(z;, zj+1) = ux(z,2")
[ [ I

xX :EI/

by the definition of uy (x,z”).
By construction, max dx(z;, zj+1) < max(ux(z,z’), ux(z’, 2")), which proves the claim.
j

Proposition 1.11. u% is the mazimal sub-dominant ultrametric on (X, dx).

Let US(X) = {ux um. on X such that uy < dx}.

Then u¥ (z,2") = sup{ux(x,2’),ux € U(X)}, where U(X) denotes the collection of ultra-
metrics on X.

Exercise 1.12. Prove the previous proposition.

Idea of Proof of Gromov’s Result. Consider uy = u%. Since uy < dy, we want to prove
that dx < c-log(|X]) - ult(X) + ux.
Proof is by induction. For any points z,z’, 2" € X,

§ +max(ux (z,2"),ux (', 2")) = ux(z, "), ()

where 6 = ult(X).
Claim is true when |X| = 3. For |X| = 5, consider points z1, s, x3, 24, 5. Want to find an
| I

x 17/

upper bound for dx (z,z") — ux(z,2).

By (%),

max(dx (z1,xs), dx (2, x3)) + § = dx(x1, x3),
maX(dx($3,$4),dx(l’4,l’5)) -+ (5 = dx<l'3,x5)
0 = max(dx(xy1,x3),dx(z3,x5)) = dx(x1,25) — 0.

Thus, max (dx(x;, xit1)) +

Therefore, 20 + u% (z,2") = dx(z,2’). Can do this argument more generally to complete the
proof. O

Consider the map H : M(X) — U(X), where X is a finite set,

M(X) ={d: X x X - R, such that d is a metric on X}, and
U(X) ={u: X x X - R, such that u is an ultrametric on X}.
Then U = M.
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Theorem 1.13. (Stability) M(X) — U(X) is 1-Lipschitz under ||| = for every
d,d € M(X) withd — u and d' — o/, ||d— d'||x = ||u — ¥||co-

Proof: Exercise.
Relaxation of being tree metric — hyperbolicity.

Definition 1.14 (hyperbolicity). Let (X, dx) be a compact metric space. Define the hyper-
bolocity as follows:

hyp(X) = inf{d > 0|V x1, xe, 3, x4, 0+max(dy (w1, x2)+dx (23, x4), dx (21, 23)+dx (T2, 24)) =
dx(z1,24) + dx (22, 23)}.

Theorem 1.15 (Gromov). For any finite metric space (X,dx), there exists a tree metric
tx on X such that ||dx —tx|| < c-log(|X]) - hyp(X) for some constant c.

Proof: See Gromov’s “Hyperbolic Groups” in book.
Metric Invariants:

Definition 1.16 (diameter, separation maps).
Diameter map: X +— diam(X) := max dx(x,x').

Separation map: X — sep(X) := inf dx(z,2’).
r#x’

Definition 1.17 (distance preserving, isometry).

(1). Amap f: (X,dx) — (Y,dy) is called distance preserving iff for all z, 2" € X, dx(z,2") =
dy (f(x), f(z")). Any such map is often called an isometric embedding,.
(2). f is an isometry between X and Y iff f is distance preserving and surjective.

(1). f: X — Y distance preserving = f must be injective. Otherwise, there exists x, 2’ €
X, z # o, such that f(x) = f(2’). But, this implies that 0 < dx(z,2’) = dy (f(z), f(2')) =
0, a contradiction.

(2). By (1), an isometry f: X — Y is actually bijective. We say that X ~ Y.

(3). Amap ¢ : M — Ris invariant if and only if for every (X, dx), (Y,dy) € M with X =Y,
U X) =u(Y).

Quantum Mechanics Question: Can you identify a family {¢, : M — R},c4 of invariants
such that if 1, (X) = 1,(Y) for every a € A, then X =~ Y?

Yes, but not directly for R; look at target space T, that dependson a. Let A = N, = n e N,
and T,, = pow(R}*"), the collection of n x n square matrices. The map ¢,, : M — T,, where
(X,dx) — 1,(X) is “the collection of all” n x n distance matrices induced by X.

~

Definition 1.18. Given n € N, (X,dy), define the map 0% : X x .. x X — R by

~N~
n times

(X1, .eey Ty) ((dx(xz', x]))n

ij=1"
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Example 1.19. When n = 1, \I/g?(:cl) = ((0)).

0 dy(a,
When n = 2, W (a1, 25) = (dx(m,m) X(xol m)).

0 dx(z1,72) dx(v1,73)
When n = 3, \I/g?)(xl,xg,xg) = | dx(x1,z2) 0 dx (2, x3)
dx(z1,73)  d(22,73) 0

Definition 1.20 (Curvature Sets). k,(X) = im(\Ilg?))

Example 1.21. x;(X) = {(0)}.

Ro(X) = { <g g) ,0 =dx(z,2), for x,2’ € X}.

Theorem 1.22 (Gromov’s Metric Space Reconstruction Theorem). Let X,Y,e M. If
En(X) = kp(Y) for everyn e N, then X =Y.

Exercise 1.23. Prove Gromov’s Metric Space Reconstruction Theorem.

Example 1.24. Let X = S! with angular metric.

r1(X) = {(0)}-

(X)) — { <g g) Se [o,ﬂ]}.

For r3(X), think of the possible configurations of 3 points, x, x5, 23 on S'. Let a, 3,7
represent the angular distances between xy and x5, 9 and x3, and x; and x3, respectively.
There are two cases:

Case 1: All three points lie on the same side of the origin, as illustrated in Figure 1 below.

Then o + 8 = 7. We can permute the three points to get o +~v = and v + § = « as well.

Case 2: Points x1, 22, x3 do not all lie on the same side of the origin, as illustrated in Figure
2 below.

Then a + 8 + v = 27.

Figure 1: Figure 2:
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g
T2
X I3
«
T1 T1
Z3
0 a B
Thus, any matrix M € k3(S') is of the form 0 ~v|—R.
0

k3(S1) is the tetrahedron with vertices (0,0,0), (7,0, ), (7, 7, 0), (0,7, 7). k3(St) =~ S2

Research Question: Compute r,(S?) for every n.

2. LECTURE 2. DATE JAN 10TH. SCRIBE AUSTIN

Definition 2.1. (X, dx) metric space, € = 0.

(1) An e-net for X is any subset N < X such that | B.(z) = X.
zeN

(2) An e-separated set in X is any S € X such that dx(s,s’) = eforall s £ s’ € S.

A metric space (X, dx) is totally bounded iff for all € > 0, it has a finite e-net.
Exercise 2.2. Prove that
(1) if there exists g-net for X with cardinality n, then any e-separated set in X has
cardinality at most n

(2) A maximal e-separated set in X is also an e-net for X

2.1. Quantification of Totally Boundedness.
Definition 2.3. The covering function of a metric space (X, dx) is given by

covy : R, - N

€ — covy(e)

where covx (€) := inf{n € N : Je-nets of X with at most n elements}.
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Definition 2.4. the packing function of X is given by
packy : Ry — N

€ — pack y(€)

where packy (€) := sup{|S| : S € X is e-separated }.

These functions are invariant under isometries.
Recall:
Theorem 2.5. (X,dx) m.s. is compact iff X is complete and totally bounded.

Exercise 2.6. X compact implies both packy and covy are finite.

Recall:
e Notation: M is the collection of all metric spaces

e isometric embeddings (¢ : X — Y is an isometric embedding iff dy (x, 2") = dy (¢(x), p(2))
for all z,2" € X) and isometries (surjective isometric embedding)

Proposition 2.7. If f : X — X distance preserving, and X is compact, then f is surjective
(and therefore an isometry).

Proof. Assume p € X\ f(X). f continuous implies f(X) is compact, therefore closed. Thus
there exists € > 0 so that B.(p) n f(X) = &. Take S < X maximally e-separated. Let
n = |S| (exists by exercise, as X is compact and hence packing number is finite). Then f(5)
is also e-separated because f is distance-preserving. Let s € S. Then

dX(pv f(S)) = gég?dx(paf(w)) =€

So {p} u f(9) is also e-separated, and has cardinality n + 1 contradicting maximality of S.

Hence f is surjective. 0
Definition 2.8. e f: X — Y is non-expanding iff dx(z,z") = dy(f(x), f(2')) for all
r,x'e X

e f: X — Y is non-contracting iff dx(z,2’) < dy(f(x), f(2')) for all x,2" € X
Theorem 2.9. X compact metric space.

(1) if f: X — X is non-expanding and surjective, then f is distance-preserving (hence
isometry)

(2) if f: X — X is non-contracting, then f is distance-preserving

Proof. Exercise or see BBI. O

2.2. Enlarging or Extending Metric Spaces.
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Enlarging metric spaces.

Example 2.10. Hausdorff ”functor”: take (X,dx) compact metric space, and consider
C(X) ={A < X : A closed}. The Hausdorff distance associated to X is the function

Ay C(X) x C(X) - R,
(A,B) — inf{e >0: A< B and B < A}

where
A¢:={re X :Jae A with dx(a,z) < €}
Denote H(X,dx) = (C(X),dy).

Theorem 2.11. (C(X),d%) is a metric space. Furthermore, if X is compact then so is
(C(X),d%) (variation of Prokhorov theorem,).

Finally, the function
z = {r}
1s an isometric embedding.

Example 2.12. Kuratowski embedding: K (X) := (L*(X)
of bounded functions f: X — R.

) where L*(X) is the space

s 11l

Definition 2.13. The Kuratowski embedding is given by
kx : X — L*(X)
xr— dx(z,)

Proposition 2.14. kx : X — L*(X) is distance-preserving.

Proof. We have:
dist(kx (2), kx (2) = [kx(2) = kx (2|, = ldx(z,-),dx (2", ) || = sup|dx(z, p) — dx (', p)|

peX
By the triangle inequality for dx,
dx(z,2') +dx (', p) = dx(z,p) = dx(z,2") = dx(x,p) — dx(2',p)
Swapping x, ' implies
dx(z,2") = |dx(x,p) — dx (2, p)|
Hence the above supremum is bounded by dx(z,’); as the bound is attained by p = z or
p =2/, it follows that dist(kx(x), kx(z")) = dx(x,2’) as desired. O

Definition 2.15. Filling radius of (M, g*) an orientable Riemannian manifold of dimension
n. Observe that kx (M) < L*(M), so we can consider the thickening (kx(M))c < L*(M).

Consider ¢, : kx(M) — (kx(M))c. This induces a map on homology: ({.)x : H,(M) —
H,(M¢°). Then
FillRad(M) := inf{e > 0 : £.([M]) = 0.}

The FillRad was defined by Gromov in the study of systolic inequalities.
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Eztensions of metric spaces. In what follows, let (X, dx) € M be compact.
(1) How does one add a point to X7

(2) How much freedom is there in that process?

Given a distance matrix on X = {xy,...,x,}:
T Ty ... XTp

T 0 d12 dln
dX: i) d12 0 :

We wish to add a new point z*, and consider possible distance matrices on X* = X v {z*}:

*

T To ... ITp T
T 0 d12 dln
) d12 0 '
Tn dln 0

How to choose f such that dx= is a legitimate metric on X*? (only interesting restriction is
triangle inequality). This leads to Katetov-functions on X:

AX) ={f: X > R": f(z) + f(2)) = dx(z,2) = |f(z) - f(2')[}
Proposition 2.16. dx« satisfies the triangle inequality iff f € Aq(X).

Proof. Exercise. (Write out triangle inequality for dx« for p,z, 2, with z, 2’ € X. O

2.3. Universal Metric Spaces. For now we know how to create various "thickenings’ 7'(X)
of a given metric space X. SO, T'(X) depends on X. Can we construct a metric space that
fits all metric spaces at once?

Definition 2.17. A metric space (U, dy) is Urysohn Universal if
(1) It is separable and complete (Polish)
(2) For any finite subset X < U, the following holds:
e Make X into a metric space by restricting dy, i.e., (X,dy|xxx = dx).

e Consider any one point extension (in the sense of Katetov) of (X, dx), call it
(X*, dxx).

e Then there exists u* € U so that dy(u*,z) = f(x) = dx«(z*,x) for all z € X.

Theorem 2.18. (Pavel Urysohn, 1920s) There ezists at least one Urysohn universal space,
U. Furthermore, any two Urysohn universal spaces are isometric.
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Proposition 2.19. Any Polish space admits an isometric embedding into U.

Proof. Likely presentations. O
Theorem 2.20. (Vershik, 2004) (X,) converges to an Urysohn Universal metric space.

[This will be one of the topics for presentation as well.|

3. LECTURE 3. JAN 14TH. SCRIBE JIMIN

Recall that given X, Y € M, an isometry between X and Y is any map ¢ : X — Y such
that ¢ is distance preserving and surjective.

¢ being distance preserving means dy(x,z’') = dy (¢(z), ¢(z’)) for all z,2" € X.

Question: How do we relax this?

Definition 3.1 (Distortion). For any isometry ¢ : X — Y, the distortion of ¢ is defined by
dis(¢) := sup, yex|dx (z,2') — dy (¢(x), ¢(a'))]

An idea is to let ¢(X) be an e-net for Y.
¢(X) =Y

Definition 3.2. Given € > 0, we say that X is e-equivalent to Y, denoted by X =~ Y, if
there exists ¢ : X — Y such that dis(¢) < € and ¢(X) is an € net for Y.

Now we consider the following definition.
Definition 3.3. d(X,Y) := inf{e|X =, Y}

Exercise 3.4. Try to see that d does not satisfy the triangle inequality and also fails the
symmetry.

Let’s go back to the definition of an isometry. We define an isomery to be a map that
is distance preserving and surjective. A map being distance preserving implies that it is
injective. So we have a bijection.

Let’s try to relax "there exists a bijection ¢ : X — Y preserving distance exactly”. If there
exists a bijection ¢ : X — Y then there exists ¢! : Y — X so that po ¢! & ¢~Lo ¢ are
identity maps. How we make it preserve the distance exactly is what introduces the notion
of distortion.

"Relaxation” is to find ¢ : X - Y & ¥ : Y — X such that ¢ o1 & 1o ¢ are € - close to the
identity respectively.

Definition 3.5. Given X, Y e M, ¢: X - Y and ¢ :Y — X,
codis(¢, ) := SU)I()WX(% U(y)) — dy((x), y)l.

yeY
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Remark 3.6. Assume that codis(¢,¢) < €. Then

dx(z,9(y)) <eforall z e X
dy(¢(z),y) <eforallyeY

Proof. The assumption means that for all z in X and y in Y, the following holds.

dx (z,¢(y)) — dy(¢(x),y)] <e.
Take y = ¢(x). Then we have |dx(z,1(y))| < e. 0

Definition 3.7 (Gromov-Hausdorff distance on M).

L inf max{dis(¢), dis(¢), codis(¢, ¢) for X,Y € M}

dist(X,Y) = 5 inf

Question: Is this finite? Do we get finite number?
Take any point zg € X, and yy € Y. Suppose we have
¢ maps everything — vy,

1 maps everything — xg.

Then
dis(¢) < diam(X),
dis(v)) < diam(Y),
codis(¢, 1) < diam(X) + diam(Y).
Thus,

dist(X,Y) < —(diam(X) + diam(Y")).

W= N =

Exercise 3.8. Prove that dist(X,Y) < 5 max(diam(X), diam(Y)).

Comments: This is not the original definition given by Gromov in the 1980’s. This is
actually given by Kalton-Ostrovskii in 2000’s.

Definition 3.9 (The original definition). Given X,Y < M, assume there exists (Z,dz) a
sufficiently large/rich space such that X is isometrically embedded into Z by tx and Y is
isometrically embedded into Z by ty.

X &9 7

Lx

y &5 7

Ly

Consider
inf{d% (1:(X), 1y (Y)), all (Z,1x,ty)} =: dist(X,Y)

Remark 3.10. The two definitions agree.

Remark 3.11. Using Gromov’s definition, we can prove Exercise 5.8.
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Consider Z = X 11Y.
X Y

(2 a)

Choose d(x,y) = 1 max(diam(X), diam(Y")). Then it’s clear that X < Y for all e. The real

question is whether dz satisfies the triangle inequality on X 11Y.

Need to prove: dz(z,z’) < dz(z,y) + dz(y,2') = max(diam(X ), diam(Y")) for all z, 2’ € X.

Exercise 3.12. Prove the triangle inequality for dist using dis and codis definitions.

Some interpretation of Gromov’s definition of dgy

Definition 3.13 (3rd definition). Given sets X and Y in M a correspondence between them

is any subset R < X x Y such that
m.(R) = X and 7y (R) =Y.

If X and Y are in compact metric spaces, then the distortion of a correspondence R between

X and Y is defined by

dis(R) :=  sup |dx(z,2") —dy(y,y')|.

(z,y),(z"y")eR

= deu(X,Y) = Linfgdis(R).

Exercise 3.14.
1) Suppose that you have ¢ : X — Y and ¢Y — X. Induce

R(¢,¢) = {(z, ¢(x)) :z e X} u{(¥(y),y) :y e Y}
c X xY.

Claim: R(¢,1) is a correspondence between X and Y.
2) dis(R(6, 1)) — max{dis(6), dis(1)), codis(@, 1)}
Theorem 3.15 (Kalton-Ostrovskii, 2000s). All three definitions agree.
Theorem 3.16 (Gromov, 1980s). dgu : M x M — R, satisfies
(1) symmetry
(2) triangle inequality
(3) dau(X,Y) =0 iff X =*°Y for X,Y € M.

(M/ ~,dgn) is a metric space .

Theorem 3.17 (P.Petersen, 2000s). dgn is a complete metric on M/ =.

Theorem 3.18 (Ivanov, 2015). dgy is a geodesic metric.
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This means that for X,Y € M, there exists v : [0, 1] — M such that
7(0) =*° X, v(1) =*° Y, and
deu((s),v(t)) = |t — s|deu(X,Y) for all t,s € [0, 1].

3.1. Geodesics on M. Claim: If XY € M, then there exists an optimal correspondence
R, a closed subset of X x Y. i.e. There exists R < X x Y closed, a correspondence with
dlS(R) = QdGH(X, Y)

Construction: Define R?(X,Y) = {R : optimal correspondence between X and Y}.
Given any R € R?'(X,Y’), we can construct g, a geodesic between X and Y by
vr(t) = (R, d;), for t € [0,1] where d; : R x R — R,.

Theorem 3.19 (Gromov’s precompactness theorem). Let N : R, — N be given D > 0.
Consider the class, F(N,D) c M,

F(N,D) :={x e M|diam(X) < D, Nx(¢) < N(¢),e > 0}.
Then F(N, D) is totally bounded as a subset of (M, dgy).
Applications to Riemannian geometry Groomv’s precompactness theorem interacts
well with Lower bounds on Ricci Curvature.

For C' € R, a natural number m, and D > 0, let R(m, D, C) be the collection of all compact
Riemannian manifolds M such that

dim(M) =m
diam(M) < D
Ricci = C(C € R).

Then R(m, D, C) is totally bounded in GH sense.

Question: How do we inject some randomness into these ideas? = metric measure spaces

4. LECTURE 4. JAN 16TH. SCRIBE WOOJIN

Facundo Mémoli’s lecture:

Recall the space (M, dgn) of compact metric spaces equipped with the Gromov-Hausdorff
distance.

4.1. Motivation of the Gromov-Wasserstein distance: we want a metric which is
relevant /sensitive to statistical measurements.

Question 4.1. Consider any two finite metric spaces (X,dx) and (Y,dy). Take any (not
necessarily different) two points z,x’ in X in the uniformly random way and observe how
often dx(x,2') is 1. If dgu(X,Y) is small, can we say that the same experiment with (Y, dy )
results in a similar result?

The answer to the above question is NO.



14 LECTURERS: MATTHEW KAHLE AND FACUNDO MEMOLI

Example 4.2. Let A, (1) := ({0,...,n},da,), where da,(i,5) = 1 — d;;. For ¢ > 0, let
Ay(e) = (Ap,e-dp,). Ase N\ Oand n / o0,

e one can check that dgu(A2(g), An(g)) N\ 0.

e However, the probability of the event da,(-,-) = € is 1/2, while the probability of
the event da, (-, ) = € approaches to 1.

Motivated by the above example, we change our approach and consider the space (MY, dgw )
of metric measure spaces (mm-spaces) equipped with the Gromov-Wasserstein distance,

which will be defined below.

4.2. mm-spaces and coupling measures.

Definition 4.3 (mm-spaces). Let X = (X, dx, x) be a compact metric space equipped with
a Borel probability measure py on (X, dx). We call X a metric measure space (mm-space).

Notation 4.4 (Collection of mm-spaces). By M™, we denote the collection of all mm-spaces
with full supports.

Definition 4.5 (Isomorphisms between mm-spaces). Consider any two mm-spaces X =
(X,dx,pux) and Y = (Y,dy,puy). We say that X and ) are isomorphic if there exists an
isometry ¢ : (X,dx) — (Y,dy) with ¢ppux = py, i.e. the measure py is the push-forward
measure of ux via ¢. We write X = ) in this case.

In order to introduce the Gromov- Wasserstein distance between mm-spaces, we first introduce
the notion of coupling measures (between measures), which is analogous to the notion of
correspondences (between sets).

Definition 4.6 (Coupling measures). Given any two probability spaces (X, ux) and (Y, uy ),
let ;1 be a probability measure on X x Y. We say that p is a coupling between pux and py if

(mx)gp = px and (Ty ) gp = iy

Note that one typical example of coupling measure between py and py is the product
measure fx & fy .

Notation 4.7 (Collection of couplings). By U(ux, 1y ), we denote the collection of all cou-
pling measures between px and py.

4.3. The Gromov-Wasserstein distance. We shall define the Gromov-Wasserstein dis-
tance between mm-spaces in an analogous way to the Gromov-Hausdorftf distance between
metric spaces. Let (X, dy) and (Y, dy ) be any two compact metric spaces. Recall that the 3rd
version of the definition of the Gromov-Hausdorff distance dgu((X,dx), (Y, dy) was defined
as deu((X,dy), (Y,dy) =  infg dis(R) where the infimum is taken over all correspondences
between X and Y, and

dis(R) := sup |dx(z,2") —dy(y,y)|.

(z,y)eR
(«'y')eR

In particular, let us write

Sxy((@,y), («,y) = |dx(z,2") — dy (y,)]. (3)
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Now we define the Gromov-Wasserstein distance. Let X = (X, ,dx, ux) and Y = (Y, dy, uy)
be any two mm-spaces. Take any pu € U(ux, py) (Definition 4.6). Note that the product
measure £ ® g is a measure on (X x Y) x (X x Y).

Definition 4.8 (The p-th distortion of a coupling). Let X = (X,,dx,ux) and Y =
(Y,dy, py) be any two mm-spaces. Pick any p € U(ux,py). For p € [1,00), let us de-
fine the p-th distortion of u as

dis, () := ff Sxy((z,y), (2,y)" d(p® p)

(X xY)x(XxY)
Remark 4.9 (Exercise). One can check that
lim dis,(p) = dis(supp[pu]),

p—0
where supp[u] is the support of p.

Definition 4.10 (The Gromov-Wasserstein distance). Let X = (X,,dx,ux) and Y =
(Y, dy, uy) be any two mm-spaces. For p € [1,0), their p-th Gromov-Wasserstein distance
is defined as .
dewp(X,Y) == inf  dis,(u).
HEU(px 1y )

Theorem 4.11. dgw,, is a legitimate metric on the quotient space MY/ = (Notation 4.4,
Definition 4.5).

Remark 4.12 (Exercise: The metric space (M™,dgw ) is not complete'). For each n € N,
consider A,, (Example 4.2) equipped with the uniform probability measure. It is known that

for m,n e N with m > n
1
d JAVSAVE I
awa (B, An) > o
Think about what is the potential limit of the sequence {A,},en in MY and conclude that

(MY, dgw 1) is not complete.

Exercise 4.13 (Estimation of dgw ). Let S™ be the n-th sphere of radius 1 equipped with the
geodesic distance and the normalized volume measure. How can we estimate dgw 1(S™,S")?
This problem can be a project problem. Also, see Remark 4.15 below.

Definition 4.14 (Covering number function). Let (X, dx) be a compact metric space. The
covering number function Nx4,) : [0,50) — N of (X, dx) is defined as

N(x.dx)(€) := inf{n € N : X can be covered by n open balls of radius ¢}.

Remark 4.15 (Estimation of dgy). By utilizing the covering number function of spheres,
one can estimate the Gromov-Hausdorff distance dgu(S™,S™) from below. Namely, we have
the inequality:

2 dGH(Sm7 STL) = dI(NSn, NSm),

IThis fact is in contract with the fact that (M, dgn) is complete (proved by P.Peterson).
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where dj is the so-called interleaving distance (we do not deal with its precise definition for
now). Also, we know

1
den(S™,S") < 5 max(diam(S™), diam(§")) = g
In general, the value 7 is not identical to dgu(S™,S"): It is known that dgn (S!,$?) = T
Matthew Kahle’s lecture:

4.4. Expectation. Let X be a random variable. We define the expectation E[X] of X.

e Let X be a nonnegative integer random variable. Then,
e}
E[X]=)i-P[X =i].
i=0

e Let X be a real-valued random variable with a density function f, i.e. P(X € U) =
§; [(z) dz. Then,

0
E[X] =J f(z) dx.
—0
Example 4.16 (Not every random variable has a mean). Consider the following random
variables:

e Let X be a positive integer random variable with the probability distribution

. 6 1
]P)[X:Z]:PZ_Q,

7 e N.

e Let Y be a real-valued random variable with the density function f : R — R defined

as
-1

f(z) = o (Cauchy’s distribution).

Proposition 4.17 (Linearity of expectation). For any two random variables A and B, and
for any constant c € R, we have

E[A+ B] = E[A] +E[B],  E[cA] = ¢-E[A].

Theorem 4.18 (Markov’s inequality). If X is a nonnegative random variable, then for any
a>0,

Proof.
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Exercise 4.19. Prove the Markov’s inequality for real-valued random variables.

We introduce the notion of random graphs. See the following references: Random graphs by
Bollobés, Janson, Riordan and The probabilistic method by Alon and Spencer (4th edition).

Definition 4.20 (Erdés-Rényi model (edge-independent model)). Let n € N and p € [0, o0).
By G(n,p), we mean a random graph with the vertex set [n] := {1,...,n}, where each edge
appears with probability p independently.

Equivalently, the random graph G(n,p) can be described as follows: if H is a certain graph
on [n] with exactly m edges,

P[G(n.p) = H] = p™ - (1—p)).

Example 4.21. Given a random graph G(n,p), let X be the number of K, subgraphs in
G(n,p), where Ky is the complete graph on 4 vertices. Then,

5px - ()"

by the following argument: Let us index each 4-subset of [n] by i = 1,..., (7). Let X; be
the indicator random variable defined as

X _ 1, if 4-subset indexed by ¢ spans a K, subgraph in G(n, p),
" 10, otherwise.

Write X as a sum of indicator’s random variables:

X:X1+-..+X(2).

By using the linearity of expectation (Proposition 4.17), we can obtain the claim.

Example 4.22. Given a random graph G(n,p), let Y be the number of induced copies of
Cy, where C} is the cycle graph on 4 vertices. One can check that

E[Y]=3- CD (1 —p)*.

In particular, the factor 3 above comes out of the fact that there are 3 different graphs on 4
vertices which are isomorphic to Cj.

Let us go back to Example 4.21. Assuming that p << n_%, we can induce that as n — oo,
E[# of K, subgraphs in G(n,p)] — 0
since (Z) p® << nip® << 1. Hence, the Markov’s inequality tells us that if p << n‘g, then?
P[there exists K4 in G(n,p)] —» 0asn —
because

P[there exists Ky in G(n,p)] = P[# of K, subgraphs > 1] < E[# of K, subgraphs].

.

(n)

)=O.

2Given any f,g: N — R, we write f << g if lim,_o

2
3
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What if p >> n=5? Then, E[# of K4 subgraphs] — o0 as n — o0. Does this imply that
P[there exists K4 in G(n,p)] — 1?7 The answer is NO.?

Exercise 4.23. Give an example of a sequence {X;};eny of random variables such that

E[X,] — o but P[X,, =0] —» 1 as n — 0.

4.5. Variance. Given a random variable X, we define the variance of X
Var[X] := E[(X - E[X])*’] = E[X?] — (E[X])?,

where the second equality is left as an exercise. Note that Var[X] = 0 by definition. Also,
we remark that some random variables do not admit its variance. We make use of o to
denote 4/ Var[X], which is called the standard deviation of X.

Theorem 4.24 (Chebyshev’s inequality). Let X be any random variable with E[X] = pu
and Var[X] = o2. Then,

1

Note that when A < 1, the above theorem says nothing.

Exercise 4.25. Show that Chebyshev’s inequality is best possible without more information
about X.

5. LECTURE 5. JAN 23RD. SCRIBE GUSTAVO

5.1. Second Moment Method.

Notation 5.1. We will use p for E[X] and ¢? for Var[E].

Proposition 5.2. Suppose that {X,} is a sequence of random variables such that
(1) E[X,] — «©, and
(2) Var[X,]| « E[X,]?

then P[X,, > 0] — 1.

For a proof of Proposition 5.2, see Chapter 4 of The Probabilistic Method.

We may return now to Example 4.21 and conclude that
P[there exists K, in G(n,p)] — 1
by checking condition (2) in Proposition 5.2. This is left as an Exercise.

Question 5.3. In Example 4.21 and the previous comments, we covered two cases concerning
the growth of p, namely, when p » n~%3 and when p <« n=2/3. What if p = ¢ n=2/> for some
constant ¢ > 07?

5.2. Three important distributions.

3In fact, it is true that P[there exists K4 in G(n,p)] — 1 as n — oo, but this is not induced from the Markov’s
inequality.
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Poisson distribution. For any p > 0, a random variable X is Poisson with mean p if
k

BRI

PX =k]=e o

for any k£ > 0. We denote this distribution by Pois(u).

Exercise 5.4. Check the following:
(1) Do P[X = k] = 1.

(2) E[X] = Syoq ke & = p.

> k
Theorem 5.5 (Brun’s Sieve). Suppose that {X,} is a sequence of random variables such
that E[X,] — p and E[()i”)] — L for every r > 1 as n — . Then X, — Pois(y) in

distribution, that is, for every k =0, we have P[X,, = k] — e‘“”k—’;.

Example 5.6. Let 0 be a uniform random permutation in the symmetric group ¥, on [n],
i.e., each permutation has probability % Define X,, as the number of fixed points. Then
E[X,] = 1 for n > 1 (use linearity of expectation, note that E[“1” is a fixed point] = 1).

Note also that for n > r,
K X, _ Xn\ (n—r1)! _ l
r r n! 7!

Hence E [({")] > ’;—: for 4 = 1. Then, by Brun’s Sieve, X,, — Pois(1). As a corollary,
P[no fixed points] = e~ L.

Binomial distribution. For any n > 1 and 0 < p < 1, we define the binomial distribution
Bin(n, p) as the number of successes in n independent trials, where p is the probability of
success in any given trial. We can easily check that

P[Bin(n, p) — k| — <Z) Lyt

for any 0 < k < n, and that E[Bin(n, p)] = np (linearity of expectation).

Now consider p = ¢/n for some ¢ fixed and n — oo. Then E[Bin(n, p)] = ¢ for n > 1. Fix k.
Letting n — oo and since 1 — p ~ e”? when p — 0, we note that

k

. n . n® reNkE e, &’ .
]P’[Bln(n,p)zk]:<k>pk(1—p) kkﬁ(ﬁ) el k)mge ’

which is precisely the Poisson distribution.

Exercise 5.7. Consider G(n,p) where p = ¢ n=%3 for some ¢ > 0 fixed. Then

66

n
E[# K, subgraphs] = <4>p6 =51
as n — 0. Show that # K, subgraphs — Pois(c®/24). In particular,

P[no K, subgraphs] — e~¢/?%,
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Normal distribution (“Gaussian”). The normal distribution A(0,1) (with mean 0 and vari-
ance 1) is a probability distribution on R. Its probability density function is given by
\/%76*”62/2. In particular, for a < b,
Pla < X < b] 'l —2 g
a< X<V = e .
o V2T

Definition 5.8. Let {X,,} be a sequence of random variables. We say that {X,,} obeys a
Central Limit Theorem (CLT) if

X, — E[X,]

Var[ X, ] —NOL)

in distribution. In other words, if for every a < b,
X, - E[X, b1
P aéééb —>J e gy
Var|[ X, ]
as n — .
Example 5.9.

e Let Y1,Y5, Y3, ... be independent identically distributed random variables with finite
mean and variance. Let X, = > | ;. Then
X, —E[X,]

Var|[ X, ] —NO1)

in distribution.

e Let pq, o, ... be any sequence of real numbers tending to oo. Let X,, = Pois(uy,).
Then {X,} obeys a CLT.

e Let ¢q,co,... be a sequence of real numbers tending to o (and such that ¢, < 1).
Let X,, = Bin(n,p) with p = ¢,,/n. Then {X,,} obeys a CLT.

6. LECTURE 6. JAN 28TH. LING ZHOU

6.1. Some exercises on Poisson distribution.

Exercise 6.1. Suppose X; = Pois(u;) and Xy = Pois(ug) are two independent random
variables. Show that X; + X = Pois(p; + o).

M with a fixed constant C' € R. Let X be

n,
the number of isolated vertices, where a vertex is isolated if it has degree zero. Observe that
E(X) = n(1 —p)" !, which follows from that fact the expectation for the i—th vertex to be
isolated is (1 — p)"~. Show that X — Pois(e =), i.e. P(X =0) — ¢ * as n — 0.

Exercise 6.2. Consider G(n,p) and p =
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6.2. Random Geometric Graphs. The study of random geometric graphs (r.g.g.) is
motivated by the followings:

e its nice application in statistics,

e it is a more 'realistic’ model than G(n,p) for many situations. For example, in social
networks, we denote A ~ B When two persons A, B are friends. Given A ~ B and
B ~ C,P[A ~ C] is high.

The basic idea of random geometric graphs is that the vertices are obtained by taking random
points in a space. Our reference book is Random Geometric Graphs by Penrose.

Example 6.3. Choose n points independently identically distributed (i.d.d.) uniformly in
[0,1]¢, and connect every pair of points within distance r. In other words, p ~ ¢ <
d(p,q) < r. Here are a few comments for this example:

e usually n — oo, r = r(n) depends on n,

e more general setting: consider a distribution on R? with bounded measurable density
functions,

e usually d > 2 is fixed,
e philosophical comment: G(n,p) looks like an r.g.g. when d — o quickly.

Notation 6.4. A random geometric graph is denoted by G(n,r) with n the number of
vertices and r the distance of adjacency.

Proposition 6.5. Let d = 2.

o ifr << n Y then a.s.s. there are no Ks subgraphs;

o ifr >>n"%* then a.s.s. there exists a K3 subgraphs.
Here a.s.s. means asymptotically almost surely, i.e. the probability goes to 1 as n — 0.
Proof. Claim E[#K3 subgraphs| = cn®r? for some constant ¢ > 0. Then the first statement

follows from the claim and Markov’s inequality, and the second statement follows from the
claim and the second movement method.

Now we prove the claim. Let z,y, z be three vertices. Notice that Ply ~ z] = r? P[z ~ z] =
r? and Ply ~ z|z ~ 2,y ~ x] > € for some constant € > 0. Then

Plz ~y,y~z10~z2]=Ply~zlz ~ 2,y ~z|Plx ~ 2]Ply ~ 2] ~ cr’r? = e
It follows that E[#K; subgraphs] ~ (;)cr ~ gn3r4. O

Proposition 6.6. Let d = 2.
o ifr << n Y% then a.s.s. there are no K, subgraphs;
o ifr >>n"%% then a.s.s. there exists a K, subgraphs.

Proposition 6.7. Let H be a geometrically feasible induced subgraph (i.e. possible as an

induced subgraph) in R® with k vertices. Then E[# induced subgraphs isomorphic to H| ~

cpgnbrdk=1),
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Example 6.8. K7 is not feasible in R?:

Example 6.9 (subgraph counts). # . « . =3-# A +1-# .

N -

subgraphs 1nduced graph induced graph

The formula in Proposition (6.7) suggests that something interesting may happen when
r~n- Ve,

" Percolation”: d > 2.
Proposition 6.10. There exists a constant \q such that
o ifr < (\g— €)n~Y?, then a.s.s. all components are of order O(logn);

o if 1 > (Mg + €)nV? then a.s.s. there ewists a unique giant component with Q(n)
vertices.

cqlogn

Fact 6.11. If r > ( )4 then a.s.s. G(n,r) is connected.

n

sketch of proof for d = 2. Recall that the n vertices of G(n,r) are chosen i.i.d. uniformly
randomly in [0, 1]?. First, we divide [0,1]* into k? congruent squares, with 1/k on a side.
The strategy is that if there is at least on point in every square and r > 3k, then the graph
is connected.

1 1
Set k = " with ¢ > 0 to be determined. The area of a square is — = cosn Then
clogn k? n
1 clogn
P[(no points in a given square)] = (1 — ¢ ogn)n <e n =n"

n

Choose ¢ > 1. Then we apply union bound (i.e. P(A or B) < P(A) + P(B)) to get
P[(some square does not get any points)] < k*n"¢ < nn ¢ < n'"¢ — 0,

as n — oo. Thus, a.s.s. all squares contain a point. U

Example 6.12 (”Coupon Collector” Problem). Roll a fair 6—sided die. What is E[# rolls
before hitting every number at least once|? (Hint: the expected waiting time in a Bernoulli
process is 1/p.)

7. LECTURE 7, FEBRUARY 4, KRITIKA SINGHAL
7.1. Poisson Point Processes. Let d > 1. A Poisson point process is a way of choosing
random points in R? with some “nice” properties.

Example 7.1. A uniform Poisson point process on [0, 1]¢ of intensity A > 0 has the following
properties:
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(1) Property 1: The total number of points is a Poisson random variable with mean .
This implies that E[total number of points] = A, and P[number of points = k| =

e M)
k!

(2) Property 2: If U < [0,1]¢ is a measurable subset of d-dimensional volume V, then the
number of points in U is a Poisson random variable with mean A - V. This implies
that E[number of points in U] = A - V.

(3) Property 3: If U,U’" < [0,1]? are disjoint, then the number of points in U and the
number of points in U’ are independent random variables. This property is referred
to as spatial independence.

The three properties described above characterize a Poisson point process. We note that the
property of spatial independence does not exist for random geometric graphs.

We now construct a Poisson point process on [0, 1] of intensity A > 0 using the following
steps:

(1) We first choose n ~ Pois()), i.e. n is a Poisson random variable with mean A.

(2) We then drop n points into [0, 1] uniformly, randomly and independently.
We check that the above Poisson point process has the desired properties.

(1) Property 1 is true by definition.

(2) For Property 2, we choose U = [a,b], with 0 < a < b < 1. We want to show that

the number of points in U is a Poisson random variable with mean A(b — a). This is

equivalent to showing that P[number of points in U = k] = e”(b’“)}c(!/\(b—a))’“

k = 0. Let n ~ Pois(\) be the total number of points in [0, 1]. Then

for every
e 0]

P[number of points in U = k| = Z P[n = i] - P[number of points in U =k | n = i]
i=0

= i - A—,(k> (b—a)*(1— (b))

=0
) (A(b —a))*
a ko
The last equality is left as an exercise. The proof of Property 3 is the following

exercise.

Exercise 7.2. Check if 0 < a < b < ¢ < d < 1, then the number of points in [a,b] is
independent of the number of points in [¢, d].

Hint: Check that P[number of points in [a,b] = k& and number of points in [¢,d] =[] =
P[number of points in [a, b] = k] - P[number of points in [¢,d] = [].

We now have two different models for obtaining random geometric graphs. In the first model,
we take n points i.i.d uniformly in [0, 1]¢ and connect two of them if they are close. In the
second model, we take a uniform Poisson point process on [0,1]¢ of intensity n. We let
N ~ Pois(n) and take N ii.d points uniformly randomly in [0,1]¢. In the second model,
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we have spatial independence which we do not have in the first model. Interestingly, we
have that these two models are the same as n — 0. A reference for this is the section
on Poissonization and de-Poissonization in Matthew Penrose’s book “Random Geometric
Graphs”.

There are ways of going between these two models. A useful fact in this regard is that
there are tail bounds or “Chernoff-type” bounds for Pois(n). An easy to use bound is the
following: if X ~ Pois(n), then P[X > (1 4+ &)n] < ¢==™. A sharper bound is shown in
the following theorem. A reference for this is the book “Concentration of measures for the
analysis of randomized algorithms” by Dubhashi and Panconesi.

Theorem 7.3. Let h: (—1,50) — R be defined as h(u) = 2-W=loeldtw=u - rop \ 0 2 > 0

u2

—z2 T —z2 —x
and X ~ Pois(\). Then, P[X = X+ z] < e M%) and PIX <A—zx] < em h(S),

Another commonly studied object is the homogeneous Poisson point process on RY. This
process has same properties as a Poisson point process, except property 1. This process gives
an infinite random geometric graph, and is an object of study in continuum percolation or

Gilbert disc model.

7.2. Brownian motion and scaling limits. Brownian motion is a natural phenomenon,
that is named after botanist Robert Brown. The corresponding mathematical object is a
stochastic process called Wiener process.

Definition 7.4 (Wiener process). A Wiener process is a random function from Rs¢ to R,
that assigns to every time t, a W, satisfying the following properties:

(1) Wy = 0 almost surely (with probability 1).

(2) W has independent increments, i.e. for ¢ > 0,u > 0, W, — W; is independent of
past values of W, for s < t.

(3) The increments follow a Gaussian distribution, i.e. Wy, — W, is normally distributed
with mean 0 and variance wu.

(4) W is continuous with probability 1 (i.e. W} is continuous in t).

One way to construct a Wiener process is the following: let 21, 29, 23,... be i.i.d normally
distributed random variables with mean 0 and variance 1. Then, for 0 < ¢ < 1
- sin (n — 1) wt
Wt = \/5 Z Zn " —( 2)
n=1

(Dt

Alternately, we may write, for 0 <t < 1,

o0 .
t
Wt=20t+\f22,zn-sm7m.

™

n=1
Another property satisfied by a Wiener process is that if W : Ry y — R is a Wiener process,
then for every ¢ > 0, V;, = (\%) W is also a Wiener process. This shows that a Wiener

process has some kind of fractal structure.
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We now construct our own random walk. Let €1,e5,...,¢, be i.i.d Bernoulli random vari-

ables. We set, for 0 <t <1,
f 2

1<k<|nt|

Wi (t) =

We have that W, is a random function from [0, 1] to R. We want to say that this function
converges to a Brownian motion. We have that 1, (0) = 0 with probability 1. By central
limit theorem, we have that W, (t) —W,(s) ~ N(0,t—s). Similarly, we also have independent
increments. We invoke Donster’s theorem that says that W, (t)j01] — Wio,1j in a suitable
function space (called “Skorokhod space”). Such a limit is called a scalmg lzmzt We note
that none of W,,(t) are continuous, but they converge to a continuous function.

Another example of a scaling limit is the following: SLE (Schramm-Loewner evolution) is
another random curve in plane, besides Brownian motion. SLE(k) is a fractal with dimension
1+ £. We consider loop erased random walk (random walk with all loops removed) in Z*. It

was shown by Loewner and Schramm that this random walk has scaling limit SLE(2) with

dimension %.

We end with an open problem. Consider self-avoiding random walk in Z2. There is uniform
measure on all simple paths of length n. It is conjectured that such a random walk has
scaling limit SLE (§).

8. LECTURE 8. FEBRUARY 11. JASON BELLO

8.1. Metric Measure Spaces. Recall the following notation:

o if ¥ = (X, dx, x) is a metric measure space (m.m. space), then (X, dy) is a compact
metric space and p, is a Borel probability measure on X such that supp[ux]| = X.

e M"Y is the collection of all m.m. spaces.
e Isomorphism: X =~ Y iff there exists and isometry ¢ : X — Y such that ¢gupux = py.

Question 8.1. What if we try to study/characterize a m.m. space X by taking statistical
measurements for X ¢

Definition 8.2. Given (X,d,) € M, n € N, consider the map \Ifg?) X x oo x X > Rv
such that (z1,...,2,) = (dg(zi, 25))7 -1

Remark 8.3. Curvature sets: K, (X) = Im(\I/g?)).

Imagine sampling n i.i.d. random points on X, Zy,...,Z, and then inducing the random
variable \Ilg?)(:i'l, ..., &p). We want to understand the distribution of the induced random
variable.

Definition 8.4. Let X = (X,dx, u,) € MY, n € N, and define the curvature measure as
U = (W) ppx ® - @ pux € Pr(RY™)

Exercise 8.5. Prove supp[Ugl)] = K, (X).
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Recall that inside of M, (K, (X))nen characterizes (X, dx) up to isometry. Similarly, we
have the following theorem.

Theorem 8.6 (M.m. Reconstruction Theorem). U = UJ(,n) forallneN < X =),

Question 8.7. Is this map U™ stable? (i.e. Lipschitz)

How much information about X can be extracted from U)(?)? from U S’ )2

8.2. Curvature Measure for n = 2, U/Sf):

U (g, 1) = (dx( 0 dx(xol,xz)) (4)

X1, $2)

To understand Ug) look at dHy := (dx)upx ® px € P1(R2*?). This is called the global
distribution of distances on X. So for t > 0,

dHx([0,]) = ((dx)#px ® ux)([0,t]) = ux @ px(Dx(t)) =: Hx (1) (5)
where Dx (t) = {(z,2") € X x X|dx(z,2") < t}.

8.3. Examples. :

o Let Ay = {{pa q}, <(1) é) . (1/2, 1/2)}, then
Di(t) = {®.p), (¢, 9)} ifo<t<l
{(p,p), (0,0), (¢,p) (¢, @)} ift=1
and px @ px ({(p,p): (¢ 0)}) = (ux(p))* + (1x(q))? = 1 + § = 5. Thus,
1 -
- ) if 0 <t< 1
Ha ) {0 ift>1
0 1
o Let A, = [ {p1,---,0n}s ,(%, ,%) , then
1 0
Dx(t) = {(piypi) :i=1,...,n} for0<t<1
XA X x X fort>1

and so for ¢ € [0,1), p%*(Da,(t) = 2y 1R ({(pispi)}) = n- 25 = ~ and for ¢ > 1,
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8.4. What about S" spheres? Consider (S™, dgn, isn) where dgn is geodesic distance and
s is normalized volume measure. Then for ¢ € [0, 7]

Hgi(t) = psr @ pgr ({(w,2') € St x S|dgi (2, 2") < t}) (6)

and for fixed zy € S7,

_ 2t t
= Iusl({l' € Sl‘dsl(l’o,l') < t}) = /le(Bt(l'O)) = % = ; (7)
Exercise 8.8. Prove Hg:(t) = 1=t for ¢ € [0, 7].
Proposition 8.9. For n € N, Hgn(t) = %7)? Sé(sin r)"tdr where T is the gamma func-
2

tion.(Disclaimer: may have forgotten some normalization constant.)

Fact 8.10. pgn(B;(7g)) does not depend on xy and
pon({(2, /) € 8" x SM|dsa(w,2") < t}) = s (Bulo) = Hon (t)

Hgn (t)
1 n — 0
0.5
n|— o0
t
us ™
2

8.5. Concentration of measure on spheres. : Most of the mass of S™ lies in (S7)°. In
other words, any 2 random points on a high dimensional sphere are approximately orthogo-
nal.

p-Diameters:

Definition 8.11. Let p € [1, 0] then the p-diameter of X is

1/p
diam,(X) = (“p-moments of dHy")"? = (J tdeX(dt))
R

+

where dHy(dt) = (dx)upix ® pix.
Exercise 8.12. Show diam,(X) = ({§,  (dx(z,2"))Ppx (dz)px (dz’)/?

Conclusion: dH, discriminates between spheres of different dimensions. Thus, U discrim-
inates between spheres of different dimensions.

Question 8.13. How much information from X can we extract from:
(1) diam,,(X) for fized po € [1,0),
(2) (diamy(X))p=17
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The following proposition answers number 2.

Proposition 8.14. s (diamy,(X'))pe[1,.0] determines dHy.
diam, (S™):

e For p = w0, diam(S™) = 7 for all n.

e For p = 1, diam;(S™) = /2 for all n.

Proof. Let a : S™ — S™ be the antipodal map, then for all p e S™,
dsn(x,p) + dgn(a(x),p) = 7 = dgn(z,a(x)).

Integrating over p, we get

| dse @ pnse o) + [ dselao). phuse (dp) = =
but since x was arbitrary,

J dsn (i, p)juse (dp) = /2.

Now, integrating over x,

diam, (S™) = ff dsn(x, p)pgn (dp)pusn (dx) = /2.

2

Exercise 8.15. diamy(S*) = m/4/3 and diam,(S?) = 4/% — 1.

Global Distributions / Geometric Information that they carry:

Proposition 8.16. Let (M, g™) be an m-dimensional compact Riemannian manifold (0M =
&) where M = (M, dyr, par) and ppy is normalized volume measure. For 0 <t « 1, we have
the following Taylor expansion

Vol(M) 6(m + 2)
where Vol(M) is the volume of a ball of radius t in R™ and Sy (x) is scalar curvature. When
m = 2, Sy(x) = Gaus(x) and so the coefficient of t™ - t* is Su Gaus(x)(dx) = topological
invariant by Gauss-Bonnet theorem.

HM(t)

Proposition 8.17 (The case of smooth, planar, simple, closed). Let
length(-)

—7 )

where | - | is Euclidean distance and L = length(C). Then for 0 <t « 1,

_x, 1 (LK2(s)dst3+O(t5)

C = (trace(C), | -,

He(?) 7 1212

where s is arc-length.*

4This expnasion can be found in http://www-users.math.umn.edu/~olver/vi_/hist.pdf.
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Consider S! with Euclidean distance, S' = R, then one can calculate by hand that Hg (2) =
2 arcsin(t/2). Thus, for ¢ > 0 small

t 5
Ha(t)= -+ -—+4+0(")
T 24w
by expanding arcsine since % =2 = & = 2 aresin(t/2).

The following corollary is from https://arxiv.org/abs/1810.09646.
Corollary 8.18. If C satisfies He = Hg1, then C is isometric to S*.

Proof. Since He = Hg1, their Taylor expansions must match. The coefficients of ¢ must

match, so 2 = 2. Thus, L = 2r. Similarly, inequality of 3 coefficients gives the following

lity

equality
[ K-
12L2 ), 247

and so §, K?(s)ds = 2m. Recall the standard fact that for closed simple planar curves,
§c K(s)ds = 2. Then, by Cauchy-Schwarz,

(2m)? = (L K(s)ds>2 < LKQ(s)ds : Lds = (2m)2.

By the Cauchy-Schwarz conditions of equality, we have that Kocl and thus K is constant.
Hence, C is a circle of length 27 and so C' =~ S*. U

Conjecture:
Simple, closed, planar curves are characterized by their global distance distributions.

Stronger Conjecture:
Bounded, closed subsets of R? are characterized by their global distance distributions.

Counterexample for Stronger Conjecture:

The counterexample is due to Boutin and Kemper https://arxiv.org/abs/math/0311004.
Exercise 8.19. Show that Hy = Hy.

9. LECTURE 9. FEBRUARY 13TH. PAUL DUNCAN

Recall the example from last time of two different bounded, closed subsets of R? with the
same global distributions. Brinkmann and Olver observed experimentally that the curve
versions are told apart by H,.


https://arxiv.org/abs/1810.09646
https://arxiv.org/abs/math/0311004
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Conjecture: Planar simple closed curves are discriminated by H,.

Proposition 9.1. S' — R? is discriminated by H,.

The conjecture is false.
Counterexample: S* < R?

= {all planar simple closed curves € M.

For every ¢ > 0,3C,C" € 1’35(/\/[’0[‘”’)(5’1 < R?) which satisfy Ho = Her, yet C 2 C', see
https://arxiv.org/abs/1810.09646.

C

9.1. Concentration of Measure. Recall, Yz, e S™,t € [0, 7],

Ha = oo (Biaa) = Sl [ (snry

(S%)€ contains most of the mass for large n. This is a geometric manifestation of the so-called
concentration of measure phenomenon.

Definition 9.2 (Concentration function of an mm-space). Let X = (X, d,, pt.) € MW Let
ax(€) =1—inf{ux(A9), A< X with ux(A) > 1/2}
= sup{ux ((A9)), A € X with pux(A4) > 1/2}
Theorem 9.3 (Paul Lévy, 1900s). For all € > 0,

-1
agn(€) < \/gexp(_n . é?).

Remark 9.4. pign(( >1—/Fexp(—151€%)

But the theorem guarantees something like this for any A < S™ with pgn(A) > %

9.2. Concentration of Measure - Gromov’s point of view. X = (X, dx, ux) € MV
”Quantum physics point of view”

(1) (X,dx) "system”

(2) px 7state of the system”

(3) f € Lip;(X,)) "measurements”
Studying different S is interesting, but & = R for us.


https://arxiv.org/abs/1810.09646
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Idea: For every given measurement f, consider/compute the diameter of fuux, after dis-
carding "noise.”

Definition 9.5 (Partial Diameter). Given X € MW «a € [0, 1], define
PartDiam, (X ) := inf{diam(A), A € X, ux(A) = a}.

Definition 9.6 (Observable diameter of an mm-space). Given X € MW k€ (0,1), define
ObsDiam, (&X') := sup{PartDiam;_,((R, | — |, fxpx))|f € Lip; (X, R)}.
Definition 9.7. A sequence (X, ),>1 S MY is called a Lévy-family iff for some « € (0, 1),
ObsDiam, (X,,) === 0.

Pleas use S™ for spheres — not S"

Theorem 9.8 (Gromov, Shioya, Funano,...). S™ is a Lévy family.
Examples/Remarks

(1) PartDiam,(S™) "=" 0.

(2) Is (Ay)n>1 a Lévy family?

(3) What about ({0,n}, lg g] ,00(1 = 1/n) + 6,(1/n))?

(1) Let p = PartDiam,(S™) = inf{diam(A), A € X, ugn(A) = a}. Given € > 0,3JA, € X
with pgn(A) = o and diam(A.) < p + €. Then

diam, (S") = J dgn(x, ") pugn (dz) pgn (da') =
Snx Sn

2
ol i
Aex Ac Aex(S™\Ae) (S™M\Ae) x (S™\Ae)

(
o §aca, dso (@, )psn(dz)pse (da') < (ps(Ad))*(p+€) < p+e
° SAex(S"\AE) dsn (@, ") pgn (dw) pugn (da') < s (SMA) < (1 — )
° S(S”\AE)X(S"\Ae) dsn (2, 2" ) psn (dz) psa (da') < 7(1 — a)?
— F<pte+2(l-—a)r(l+(1—a))

)?
") < musn (A

— p=75 —2(1 —a)m(2—a). Now, for « = 1— we obtain
PartDiam;_,(S") > g —27k(1 + k) > 0 for K > 0 small.
(2) To prove that (A,),>1 is not a Lévy family, we need to convince ourselves that
Vn3f, € Lip;(A,, R) such that PartDiam;_,(fxu,) is large.

Idea: Partition {1,...,n} = AU B with |A| ~ |[B| ~ §. Then consider f,, mapping A
to a and B to b.

Claim: f, is 1-lipschitz.
For this choice of f,, (f5)xit, has large PartDiam,;_,, for small &.
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(3) This is clearly a Lévy family.
Some properties:

Definition 9.9. (A poset structure on M%) We say that X > Y in MWV iff 3¢ : X >V
surjective, 1-lipschitz such that pypux = py.

Exercise 9.10. Prove that this is a poset structure (The fun part is showing that if X' <
V, Y <X, then X =Y.

Proposition 9.11. Let X,y in MW a € [0,1],x € (0,1). Then
(1) PartDiam, (X) > PartDiam,())
(2) ObsDiam,(X)(>, <)ObsDiam,(Y)
(3) ObsDiam,(X) > PartDiam;_,(Y)
(4) ¥Vt > 0,0bsDiam, (tX') = tObsDiam,(X), where tX = (X, tdx, pix).

Proof. Proof of (1):

Let A, < X such that pux(A,) = a. Then it is enough to show that PartDiam,(Y) <
diam(A,). We have p(A,) €Y and

py (p(Ag)) = nx (97 (9(Ay)) = px(Ay)
Then, since diam(p(A,)) < diam(A,), we are done.

\Y

Q.

The rest of the proofs (including the direction of the inequality in (2)) are exercises.

Theorem 9.12 (Shioya). For k€ (0, 1),

(1) lim,,_,o, ObsDiam, (y/nS,) = PartDiam; .(R,| — |,7'), where ' is I-dimensional
Gaussian measure.

(2) ObsDiam, (S™) = O(\/Lﬁ)

Proof. (1) This is one of the projects.

(2) Apply (1) and part (4) of the previous proposition.

Application: Let (r,) < Ry and conisder (r,S™).

Corollary 9.13 (Shioya). (r,S™)n>1 is a Lévy family iff \7’/—% =50.

9.3. Comparison Geometry for ObsDiam,(—) :.

Theorem 9.14 (Bonnet-Myers). Let M be a compact Riemannian manifold of dimension
n with 0M = & such that Ricy, = (m — 1)g™ = the Ricci tensor on SM. Then

diam(M) < 7 = diam(S").
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Theorem 9.15. Let M be a m-dimensional Riemannian manifold with OM = & and Ricy; >
(m —1)gM. Then for any x € (0,1),

ObsDiam, (M) < ObsDiam,(S™).

10. LECTURE 10. FEBRUARY 18. SAM MOSSING
10.1. Recap: Concentration of Measure. Let X = (X, dx,uyx) € MY, Recall the
following definitions:

e Concentration function:

ax(e) =1—inf{ux(A°), A < X measurable with ux(A4) > 1/2}

e Partial Diameter, (o € (0,1)):
PartDiam, (X) = inf{diam(A)|A < X, ux(4) = o}

e Observable Diameter, (x € (0,1):

ObsDiam,(X) =  sup {PartDiam;_,.(fgux)}
feLipy (X,R)

e Levy Family: (X,), € M" is a Levy family if and only if ObsDiam, (X, ) — 0 for all
ke (0,1)

10.2. Tensorization. (Possible Paper: Estimate of observable diameter of ¢, product spaces:
https://link.springer.com/content/pdf/10.1007/s00229-015-0730-1.pdf)

Let X = (X,dx, px) € M™, pe[1,00). For all n € N define X, ,, := (X", dx, ,, p¥"). Given
(1, ooy Tn), (2, ooy 2l) € X™, define the metric dx, , (1, ..., @), (@], .oy 2)) = (i, dx (2, 25)P) P
e Example: X = S! (Tori)
e Example: X = {0,1} (Hamming cubes)
Theorem 10.1 (Ozawa-Shioya c. 2016). Let X € M"Y, k€ (0,1), pe [1,00). Then:
ObsDiam, (X, ,) < Cy, diam(X) n

where Cy 1 = 44/210g(2/k) and C,,,, = 4 + 44/210g(2/K) for p > 1.

Example 10.2. Let H, = ({0,1}", dg,,, unif) be the Hamming cube with uniform measure
and distance metric

#Hie {1, n}|x; # x))
— ” :

du, (1, ..y x0), (2, 2)))

For each n we can use the previous theorem with X = {0,1} and dx(0,1) = diam(X) = %

to see that ObsDiam, (H,) < O(n~"/?). So by definition H,, is a levy family.


https://link.springer.com/content/pdf/10.1007/s00229-015-0730-1.pdf)
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10.3. Relating ax(¢) to ObsDiam,(X).
Theorem 10.3. For any X € M", € >0, k€ (0,1/e¢):

(1) ObsDiam,(X) < 2ay'(k/2) where, for v € (0,1), ay'(v) = inf{e > Olax(e) < v} is
the generalized inverse.

(2) ax(e) < sup{x > 0|ObsDiam,(X) > €} < inf{x > 0|ObsDiam,(X) < €}

Proof. Postponed until later in lecture. U

Example 10.4. Applying item (2) of this theorem along with Levy’s theorem (from the
/2

previous lecture) we see that ObsDiam, (S") < \/% log(

) — 0. This gives us a proof
showing that S™ is a Levy family.

Corollary 10.5. A sequence (X,,), = MY is a Levy family if and only if ax, (€) — 0 for all
e > 0.

Proof. (=) If(X,,), is a Levy family then for all xq € (0, 1), ObsDiam,,(X,,) — 0. So for
every € > 0 there exists N = N(e, ko) € N such that ObsDiam,,(&,) < € for all n > N.
Therefore by (2) we see that:

ax, (€) <inf{x > 0|ObsDiam,(X,,) < €} < kg for n large enough.

Since kg is arbitrary, this implies that ax, (¢) — 0.

The other direction is similar and omitted. [l

Example 10.6. Take the sequence (Ay,), € M™. Now we have the tools for another proof
(using the concentration function «) that this is not a Levy family. Let € € (0,1). Since
every distance between points {1, ..., 2n} is either 0 or 1, we see for any subset A < {1, ..,2n}

that A¢ = A. Thus:
1
an,, (€) =1 —inf{ua, (A)A c {1,....2n}, pa,, (A) = 5} =1/2»0.

10.4. Levy Radius. There exists another invariant called Levy Radius that we can use to
mediate between the observable diameter and the concentration function. The goal of this
invariant is to detect how close any given 1-Lipschitz function is to being constant.

Definition 10.7. Given X = (X, dx,uyx) € M"™ and f € Lip,(X,R), we say that ap € R

is a pre-Levy mean of f if (fupx)(—0,a0] = (fapx)[ao, ) = 3. Two remarks: pre-Levy

means always exist but are not necessarily unique, and these are sometimes called medians.
Exercise 10.8. The set of all pre-Levy means of f is a bounded, closed interval, say Ag(f).

Definition 10.9. The Levy mean of f, denoted my is:
 min(Ag(f)) + max(4o(f)
5 :
Definition 10.10. The Levy Radius of X is defined as follows. Fix x € (0,1). Given p > 0
and f € Lip, (X, R),

say property CY(p) is true if ux({z € X : |f(z) — my| = p}) < k.
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Define:
LevyRad, (X) = inf{p > 0 : Vf € Lip, (X, R), CZ(p) is true}

10.5. Relating Levy Radius and Observable Diameter.
Lemma 10.11. For all k € (0,1),
ObsDiam, (&) < 2 LevyRad, (X).

Proof. Let p > LevyRad, (X). So for f € Lip;(X,R), ux({x € X : |f(z) — my| = p}) < k.
Thus (fepx)([ms—p,ms+ p]) =1 — k. So PartDiam;_,(fgpx) < 2p, and thus

ObsDiam,(X) = sup PartDiam;_.(fzpx) < 2p.
feLip, (X,R

Since p > LevyRad, (X) is arbitrary, we take the infimum over all such p to conclude the
result. U

Lemma 10.12. For all k € (0, %),
LevyRad, (X) < ObsDiam,(X).

Proof. Let a = ObsDiam,(X). Pick any f € Lip,(X,R), then PartDiam;_,(fuux) < a. So
by definition of partial diameter, for any ¢ > 0 there exists A. € R measurable with the
following properties: diam(A.) < a+e€ and fupux(A.) = 1—k. Now we smooth out the set A,
by taking ¢, = inf A,, r. = sup A, I, = [l r.]. Observe that I, > A, with (fuux)(l) = 1—k
and diam(l.) = diam(A.) < a + €. Next we claim my € I..

Assume the claim for now. So I, < [my — (a +€),ms + (a + €)]. Thus

px({re X |f(z)=msl < atep) = (frux)([my—(ate),mp+(ate)]) = (fpux)(l) = 1-r

Thus px({z € X : |f(x) —mys| = a+€}) < k, and so by definition of the Levy Radius we have
LevyRad, (X) < a + €. Since € > 0 is arbitrary we can take the infimum over € to conclude:

LevyRad, (X) < a = ObsDiam,(X).

Proof of claim: assume for contradiction that my ¢ I.. There are two cases, my < {, or
my > 1. In the second case I. < (—o0,my). Also, recall that x € (0,1/2) by assumption,
and so 1 —k > 1/2. So using this along with the definition of m; we see that:

1 1
5 < 1=k < (Femn)(L) < (Fpmx) (=0,mp) = 5.
This gives us a contradiction. The proof for the first case is similar and omitted. U

Corollary 10.13. (X,), is a Levy family if and only if LevyRad, (X,,) — 0 for all k € (0, 1).

Remark 10.14. The moral of this section is that Levy families can be detected by checking
that 1-Lipschitz functions are almost constant.
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10.6. Relating Levy Radius and Concentration Function.
Lemma 10.15. For alle > 0, k € (0,1/2),

(1) LevyRady, (o (X) <€

(2) ax(LevyRad, (X)) < &

Proof. (Exercise) O

We can use this lemma to provide a proof for part (1) of Theorem 11.3 from the start of
lecture.

Proof. Our goal is to show ObsDiam,(X) < 2a3'(k/2). Fix € > 0. By lemmas 11.12 and
11.15 respectively,

ObsDiamyq (¢ (X) < 2LevyRad,, () < 2¢
Now fix k € (0,1/2), and so for all € > 0 with 2ax(€) < k, we have:
ObsDiam, (X) < ObsDiamyq (¢ (X) < 2e.
Taking the infimum over these € we conclude:
ObsDiam,(X) < 2inf{e > 0|ax(e) < K/2} = 2a' (k/2).
0

10.7. Observable Distance on mm-spaces. We want a metric on M" to detect Levy
families. That is, we want a metric d such that (X,,), is a Levy family if and only if
d(X,,*) — 0.

Remark 10.16. Observe that the Gromov-Wasserstein distance dgw,1 does not detect Levy
families. Recall that S” is a Levy family and that

dew (X, *) = —d1am1 f fdxﬁbx ® pix.

Since diam;(S") = 7 for all n, this shows that dew,1(S") = § - 0 even though it is a Levy
family.

Remark 10.17. Let [ = [0,1) with 1-dimensional Lebesgue measure £'. It is a classical
fact that given X € M™, there exists px : I — X such that @X#El = pux. Any map like
that is called a parametrization of X.

Also given px : I — X, we can define the pullback map ¢% : Lip,(X,R) — F(I,R) by
oxf = fopx.
Let F(I,R) denote the set of all measurable functions f : I — R.
Definition 10.18. The Ky Fan Metric on F(I,R) is
dxe(f, 9) = nf{p > Olux({z € X : [f(z) — g(x)| = p}) < p}.
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Definition 10.19. Let dy denote Hausdorff distance. Define the observable distance ,
denoted d.,. on M™ by:

deone(X,Y) = infdiF (% Lipy (X, ). ¥ Lip, (¥. R)
where we view % Lip; (X, R) and ¢} Lip, (Y, R) as subsets of (F(I,R), dkr).
Proposition 10.20. d.p.(X,*) and ObsDiam,(X) are within a factor of 2 of eachother.
Theorem 10.21. (X)), is Levy if and only if deone(Xp, =) — 0.

11. LECTURE 11. FEBRUARY 20. SUNHYUK LIM

11.1. Urysohn Universal Space. Presentation about Urysohn Universal Space by Samir
Chowdhury.

Fréchet-defined metric space~1905. Urysohn~1924, Hausdorff~1924 and Katétov~1986 de-
veloped the following theory.

Definition 11.1 (1 point extension). A metric space (X, dyx) is given. Then, a metric space
(Y, dy) is said to be one point extension of X if Y = X 1 {y} and dy|xxx = dx.

Definition 11.2 (1 point extension property [IEP]). We say a metric space (U, dy) has one
point extension property if V finite subset X of U and any one point extension (Y, dy) of X
such that Y = X u {y}, Ju € U such that X u {u} is isometric to Y.

Theorem 11.3 (Ultrahomogeneity). Let X,Y be serabale and complete metric spaces with
1EP. A is a finite subset of X, B is a finite subset of Y, and ¢ : A — B 1is an isometry
between A and B. Then, 3 isometry ® : X — Y extending ¢.

Proof. Since both X and Y are separable, there are countable dense subset Sy < X and
countable dense subset Sy € Y. Let

SX = {$1,$2, .. }
and

SY = {yl,yg, Ce }
¢ : A — B is given. Observe that since A U {z;} is still a finite metric space, because
of the 1EP of Y, there exist v; € Y and isometry f; : Au {1} — B u {v;}. Also, since
B U {v1} u {y1} is a finite metric space, because of the 1EP of X, there exist u; € X and
isometry @1 : Au {z1} U {u;} > B u{v} U {y1}. Repeat this process inductively. Then,
we have sequence of isometries ®,, for each n € Z-, where each ®,, extends ®,,_;. Finally,
define
@:zUCIDn:AuSXHY.

Obseve that Sy < Im(®). Then, one can extend the domain of ® by using the completeness.
O

Corollary 11.4. Suppose X and Y are separable, complete, and 1EP. Then X and Y are
1sometric.

Proof. Take A = B = ¢J in the previous proof. 0J
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Definition 11.5 (Urysohn universal space). A metric space (U, dy) is said to be Urysohn
universal if it is separable, complete and has one point extension property.

Remark 11.6. Any separable metric space can be isometrically embedded in Urysohn uni-
versal space (U, dy) (take a countable dense subset S = {sq, sg, ... } and use IEP+completeness).

Theorem 11.7. A Urysohn universal space (U,dy) is a geodesic space. It means that, for
any two points a,b € U, there exist continuous~y : I = [l,r] — U such that y(r) = a,v(l) =,
and dy(y(t),v(s)) = |t — s| for any t,se .

Proof. Consider closed interval I := [0,dy(a,b)] < R. Since I is separable, there exists
isometric embedding ¢ : I < U. Let | = ¢(0) and r = ¢(dy(a,b)). Let f: {l,r} — {a,b} be
the map such that f(I) = a and f(r) = b. This f is isometry so it can be extended to global
isometry ® : U — U. Then, ®(¢(I)) is geodesic from a to b. O

Remark 11.8. Do we have an example of complete, separable but not geodesic space (ques-
tion by Prof. Matt Kahle)? Yes, sphere with euclidean metric (answer by Osman).

Remark 11.9. In fact, Urysohn universal metric space (U,dy) has uncountably many
geodesics between any two points (& branching).

Now, we will construct Urysohn universal space.

Definition 11.10 (Katétov function). Let (X, dy) be a metric space. A function f: X — R
is said to be Katétov function if it satisfies the following inequality:

f@) = fy) < dx(z,y) < f(x) + f(y)
for any x,y € X.

Remark 11.11. In the above definition, observe that the first inequality actually implies
|f(z) — f(y)| < dx(z,y) so that f is 1-Lipschitz. Also, the second inequality means f is
nonnegative.

We denote E(X) := {All Katétov functions on X}.
Remark 11.12.
(one point extension of X) «— E(X),

Let Y = X U {y} be one point extension of X. Let f : X — R such that f(z) = dy(z,y).
Verify f € E(X),. Conversely, given f e E(X),, Write Y = X U {y} and

dx(a,b) if a,be X

dy(a,b):=<0ifa=y=">
f(a) ifae X, b=y

In other words, Katétov functions encode distance to a abstract point.

One can give metric structure on E(X) in the following way: dpix)(f:9) = sup,ex [ f(x) —
g(x)].



LECTURE NOTES FOR MATH 8250 RANDOM METRIC SPACES SPRING 2019. 39

Definition 11.13 (Katétov extension). (Y, dy) is a metric space. X is a finite subset of Y.
f € E(X). We define

kf Y —R
y — inf (dy(z,y) + f(z))
zeX
This k¢ is the Katétov extension of f.
Remark 11.14. Verify the following properties.
(1) k?f = f on X.
(2) kpe E(Y).
Definition 11.15. Wesay f € E(Y) is supported on X < Y if we have f(y) = inf,ex (dy (2, y)+
f(z)) VyeY.
We denote
E(Y):={fe E(): f is finitely supported}.

Remark 11.16. (1) One can isometrically embed Y in F(Y') by using the Kuratowski
embedding in the follwing way:

Y — E(Y)
Yy — fy
where f, 1 Y — R is the map satisfying f(z) = dy(z,y). the support of f, is {y}.

~

(2) Let X be a finite subset of Y and f € E(X) = E(X). Then, k; € E(Y).

(3) dexvy(f, fy) = f(y). Here is the proof.
£ (2) = fy(2)] = [f(2) = dv(z,9)] < f(y)
|

for arbitrary z,y € Y so that we have sup,.y |f(2) — fy(2)| < f(y). Also,
£6) = 176) — 1(0)| < sp ) = ().

(4) Let X be a finite subset of Y and f € E(X). Then,
dpyy(ky, fo) = ky(x) = f(@).

(5) Let X be a finite subset of Y. Any one point extension of X embeds isometrically in
E(X) and hence in E(Y).

Proposition 11.17. IfY is separable, then E(Y) is separable (E(Y) may not be).
Proof. Start by showing that for finite subset X < Y, F(X) is separable. Let f € E(X),

then one can view f =) _. ¢, 1,. Take functions which assume rational values for each c,,
then we havbe countable dense subset of E(X).

Now, let E,(Y) := {f € E(Y) : [supp(f)| < n} for each n € Z.y. Then E(Y) = |, E.(Y),
so it is also separable. O
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Finally, we will construct Urysohn universal space in the following way:

Let Y be an arbitrary separable metric space. Define Yy := Y, Yy := E(Y), Y5 := E(V1),.. .,
and Y, := (J, Y,. Take the metric completion Y, of Y,,. Then, Y, is separable by the

previous proposition. So, to show that Y,, is the Urysohn universal space containing Y, it is
enough to show Y, has 1EP.

Take d to be the supremum metric on Y,,. For any f, g € Y., take n large enough so that
f9 €Y, and d(f, g) = dv,(f. 9).

Let X = {z1,22,...,2,} € Yy, and Z = X U {z} such that dz|xxx = d|xxx. Define
fX—->R

x— dz(z,2)

f € E(X). Take katétov extension ky : Y, — R. Fix arbitrary € > 0. Pick y1,...,Yn € Yon(e)
such that d(x;,y;) < € for each i. Define

fé‘ :{yla cee 7yn} — R
yi — ky(vi)

Extend to get kr. : E(Yne) — R. So kf. € Y41 We want to show {ky.}. has Cauchy
property.

Let e, > 0. Then we have f. : {y1,...,yn} — Rwith d(x;,y;) <eand f, : {z1,...,2,} —
R with d(z;,z) < n. Let M := max(m(e),m(n)). Then, A u B < Yj;. Now we want to
bound |ky, — ky, | for all y € Ya;. We have,

kr.(y) = inf(d(a,y) + f.(a)
and
ks, () = I(d(b.) + £,(0).
Then.
by, () — ky, ()] = | inf (d(a,) + fo(a)) — I (d(b.) + J, (D))

Let a = infea(d(a,y) + fo(a)) and 8 = infiep(d(b,y) + f,(b)). without loss of generality,
one can assume « = . Let ¢ be such that d(z;,y) + k¢(z;) = ks (y). Then,
d(z;,

k. (y) — kg, (W) < |d(yi,y) + Ep(ys) — y) — k()]
< |d(yi, y) — d(2i,9)| + |kp(yi) — kr(20)]
< 2(e+n)

since vertd(y;, y)—d(zi,y)| < d(yi, ;) by the triangle inequality and |k (y;)—k(z:)| < d(yi, 2i)
from the definition of Katétov.

Thus, {k;.}. is cauchy. hence the limt exists in Y. Call it 7.
Ak fo.) = dkp Sy )| < [k (2:) = kr(y)| < (i gi) <€
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So, as € goes to 0,
tin(ky,.f,) = (k. £,
= lim k. (:)
= lim f-(y:)
= lim ks (y;7) = ky(2s) = f(x1).

Thus d(?a fzz) = f(xz) = dZ(Zaxi>'
Addendum from Samir Chowdhury:
An application:

Sunhyuk asked after class if [ knew any applications of the Urysohn universal space. Here
is one that I know.

We’ve been talking about the collection of compact metric spaces equipped with with dGH.
Question: is the collection of all compact metric spaces a set? One proof providing a positive
answer to this question is obtained via the Urysohn space U: simply embed every compact
metric space into U. Then the collection of all compact metric spaces is a subset of the metric
space U, and is therefore a set.

Non-unique/branching geodesics:

Here is a quick proof (taken from a Melleray paper) of the fact that there are uncountably
many geodesics between any two points in U:

Let a # be U, and let ¢ = dy(a,b). Let v be a geodesic in U from a to b, and let m be its
midpoint. Then « has length /.

Let € > 0.
Next define a map f. : {a,b,m} — as follows: a +— €/2, b+ £/2, and m > e.
Then f, is Katetov. We have:

|[fe(a) = fe(D)] = |€/2 = £/2] = 0 < dy(a,b) = £ < fe(a) + fe(b),

and also

|[fela) = fe(m)| = £/2 — €| < dy(a,m) < /2 + € = fe(a) + fe(m).

Then f corresponds to a 1-point metric extension, so there exists z € U such that dy(a, z) =
0/2, dy (b, z) = /2, and dy(z,m) = €. But then z is on a geodesic from a to b that is different
from ~.

Bonus: this example can be adapted to produce branching geodesics in U. Even worse, these
geodesics may be made to branch uncountably often.

12. LECTURE 12. FEBRURAY 25. MARIO GOMEZ

Definition 12.1 (Urysohn Universal Space). A metric space (U, dy) is called Urysohn Universal
if it is Polish (that is, complete and separable) and satisifies:
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(1) (Universality) Every separable m.s. X has an isometric embedding X — U.

(2) (Homogeneity) Every isometry between finite sets of points extends to an isometry
of the whole space.

Remark 12.2.

(1) We have previously shown that the Urysohn Universal space exists and is unique up
to isometry.

(2) We need both universality and homogeneity in order to get the Urysohn space. For

example, C[0, 1] with the supremum norm satisfies universality, but not homogeneity.

Today’s goal: “Sufficiently random” finite metric spaces converge to the Urysohn Universal
space with probability 1. We will define what we mean by sufficiently random and under
which probability measure.

12.1. Random Distance Matrices.
Definition 12.3. Let
R = {(Tij);ﬁ’:l LTy = O, Tij = O, Tig = Tji, Tik + T'kj = Tij,Vi,j, k’}

Elements of R are called distance matrices (dm for short). r € R is proper if there are no
0’s off the main diagonal.

Remark 12.4.

(1) Every dm determines a semimetric on N. The conditions in the definition of R
are reflexivity, nonnegativity, symmetry, and the triangle inequality, respectively.
Additionally, a proper dm determines a metric.

1 2 3
1/0 ri2 ri3
2 0 T23
3 0

For example, rq5 is the distance between 1 and 2.

(2) R is a convex cone in the vector space of infinite real matrices, so we will call it the
cone of dm’s.

Definition 12.5. R, =dm’s of order n.

As above, every r € R,, determines a (semi)metric on the space X, consisting of n points.
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Let’s define a function p,, ., : M5 — M? where M} is the set of symmetric matrices of order
k. Given r € M2 we write p,,,(r) for the northwest corner of r of order n.

1 .. n ... m

\ ).

Notice that py,,(Rm) = R,. We define analogously p,, : My — M7, where p,(R) = R,.

Remark 12.6. The cones R,, are invariant under conjugation by elements of S, (that is,
when rows and columns are permuted simultaneously).

Example 12.7. Ry = {0}, and Ro = {(25) : r = 0} = R>,.

Definition 12.8 (Admissible Vectors). Let r = (r;;)7;_; € R. A vector @ = (a;)7 € R" is
admissible if the matrix obtained by attaching @ to r as the last row and column is a distance
matrix of order n + 1.

Notation 12.9.
o A(r) = set of admissible vectors for a fixed dm r.

e r% is the matrix obtained by attaching @ as described.

0 rg -+ Tin|m
T21 0 a9
rt =
rnl e 0 an
a, az -+ ap | 0

Remark 12.10.
(1) The projection p, 1, recovers the original matrix: pp,1.,(r%) =r.
(2) The (semi)metric space X,s is a one point extension of X,.
(3) The admissibility of @ € R™, for a fixed r € R, is equivalent to the system
la; — aj| <1y <a; +aj, (8)

for all i,j = 1,...,n. Thus, A(r) = {(a;)} € R™ that satisfy (8)}.

Notice that the system above is very similar to the Katétov condition. Indeed, if we
write X, = {1,...,n}, its metric as dx, (i,j) = r;;, and define f(i) = a;, then f is a
Katétov function as per Definition 11.10.

Definition 12.11 (Projections). Given r € R,, and n < N, we define the projection
Xp o Alr) —— Alpa(r))

(bl>z]\il — (bl, co ,bn).
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Lemma 12.12 (Ammalgamation Lemma). Let r € R,.. For any two @,b e A(r), there exists
h e Rsg such that b’ = (b, ..., b,, h) € A(r9).

\\,/

b

0 7rg -+ Tp|la by
T21 0 a9 bg
Tnl -0 |a, b,
ap ay -+ a, | 0 h
by by - b, | h O

In other words, it doesn’t matter in what order we attach @, b tor. We can always expand b
so that b is still admissible by r°.

Proof. Consider two finite metric spaces X = ({z1,...,2,},01), Y = ({v1,---,Un}, p2),
and assume that the subspaces {z1,...,2, 1} and {y1,...,y,_1} are isometric (that is,
p1(zi,z;) = po(yi,y;) for i,j = 1,...,n —1). We claim that we can find a metric space
Z = ({z1,-+ s 20 l,zn,an} ) and 1sometrles L : X - Z, I, :' Y — Z such that
Li(z;) = ]Q(yz) =z fori=1,...,n—1, I1(x,) = 2z, and I1(y,) = 2z,+1. Z can be any
set with (n + 1), so the real problem is choosmg an appropriate metric. Notice, though,
that p on {z1,..., 2,1} is already given by p; and ps. Moreover, p(z;, z,) = p1(z;, x,) and
p(ziy Znv1) = p2(Yi, yn) because Iy, I are isometries. Thus, to build p we only have to find
a suitable h = p(z,, 2,+1) = 0. For that purpose, we have the following inequality for all
ij=1,....n—1;

pl(‘riaxn) - p2(yi7yn) P1 (wl?xj) + pl(mmxn) p2(yia yn)
= p1(75, Tn) + p2(Yi, ¥5) — P2(Yi, Yn)
< pu(Tg, Tn) + p2(Yj, Yn)-

The two inequalities above are a consequence of the triangle inequality on p; and ps, respec-
tively. Then:

M = max | py (i, 2n) = p2(Yis yn)| < min |pr(2j, ) + p2(ys yn)| = m,

so that we can choose an arbitrary h € [M,m] and set p(z,,z,+1) = h. Rephrasing the
above inequality in terms of elements of Z shows that p satisfies the triangle inequality and
is, indeed, a metric. This establishes the claim.

Now, assume r € Ro,_1,d,b € A(r) and write X,« = {z1,...,2,} and Y5 = {y1,.. ., yn}.
The claim gives a third space Z in which h = p(2,, z,11) = 0 is the number requlred by the
lemma. 0

Lemma 12.13. Forn < N and r € Ry, X, is an epimorphism A(r) — A(p,(r)). In other
words, for alld € A(p,(r)), there exists (byi1, - .., by) such thatt/ = (ay,...,an, bys1,...,bN) €
A(r).
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Proof. We can represent r € Ry as a sequence of admissible vectors r(k) of increasing lengths
k, where r(k) € A(py(r)):

r(k)
0 rg - 1 k+1
T21 0
Tk1 Tk k+1
0

The conclusion follows by repeatedly applying the amalgamation lemma (12.12) to @ and
r(n),r(n+1),...,7(N) (every r(k) is admissible for the previous distance matrix pg_;(r)).
O

Now, to consider probability we take as input an arbitrary probability measure v on R-.
The idea of the method is to construct arbitary measures on matrices. For that we determine
the distribution of the first row and successively determine the conditional measures of the
entries. More explicitly, we start with the 1 point metric space {1}. To add new points
n = 2,3,..., we set the distance r,, from n to 1 to be a random variable £, i.i.d. with
distribution 7.

12.2. Universal Distance Matrices.
Definition 12.14.

(1) r € R is a universal distance matrix if for all ¢ > 0, n € N, and @ € A(p,(r)),
there exists m € N such that max;—y__, |r;, — a;| < e. That is, for every n € N,
{(r3)i21}52 041 is everywhere dense in A(p,(r)).

Distance<e
0 rg - |ag <——— Iy

T21 0

Distance<e
Tn1 Ap < > Tnm

0

(2) r € R is almost universal if for all n € N, the set {(;, ;,)} ,_,} of order n submatrices
of r if dense in R,,.

Lemma 12.15. Universal distance matrices are Almost universal, but not conversely.
Theorem 12.16.

(1) The completion (U, p,) of (N,r) with metric determined by a universal proper dis-
tance matrixz r is the Urysohn Universal Space.
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(2) For any 2 universal proper distance matrices r,r’, the completions of (N,r) and (N, 1)
are 1sometric.
12.3. Universality of Almost All Distance Matrices.

Theorem 12.17. The measures vy (constructed inductively in paper) are concentrated on
the set of universal matrices. That is, almost every distance matriz (with respect to the
measures vy ) is universal.

This is the precise formulation of the statement at the start of the lecture: almost every
random metric space converges to the Urysohn universal space with probability 1. Lastly
we have:

Theorem 12.18. The completion of the random countable metric space N is the Urysohn
space with probability 1.

13. LECTURE 13. FEBRUARY 27. SCRIBE FRANCISCO MARTINEZ

13.1. The Rado Graph.

Definition 13.1 (Rado Graph). The Rado Graph, denoted in this lecture as fR, is the
countably infinite graph with vertex set Z, and edges x ~ y if and only if, for x < y, the
2" binary digit of y is 1 (reading from right to left).

Example 13.2. We can characterize the set {y : © ~ y,x < y} in R using congruences
modulo 2%, for instance:

e 1 ~ gy if and only if y is odd.

e 2~yifandonlyif y=20or3 mod 4.

e 3~yifandonlyify=4,56, or 7 mod 8
Note 13.3. When consider only the first n vertices, the first few numbers are connected to
roughly half of the vertices.
Properties of the Rado Graph.

(1) Universality: If H is a finite (or countable) graph, then there exists an embedding
H — *R as an induced subgraph.

(2) Homogeneity: If f : H — H' is an isomorphism between any finite induced sub-
graphs of R, then f extends to an automorphism of fR.

(3) One point extension: Let U,V be finite graphs such that U is an induced subgraph
of V and V has precisely one more vertex than U, i. e. vertices(V') = vertices(U)u{v}.
If f:U — R is an embedding as an induced subgraph, then f extends to f Ve—R
as an induced subgraph.

(4) If U,V are disjoint finite vertex subsets of MR, then there exists a vertex = such that
x is adjacent to every vertex of U and is adjacent to no vertex of v.

Note 13.4.
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o Property (4) implies (3): For U and V' as described in (3), partition the vertices of
U into A = Ny (v) and B = vertices(U)\A. Then define f(v) as the vertex z that is
adjacent to all f(A) and not to any vertex in f(B).

e Property (3) implies (2): the extension can be built using a back and forth argument,
similar to the proof of Ultrahomogeneity of the Urysohn Universal Space given in
lecture 11 (Theorem 13.3).

Other constructions/definitions of R.

Inductive Definition of ‘R

Definition 13.5 (Inductive definition of ).
e Stage 1: PR has 1 vertex.

e Stage 2: To get Ry, add two independent vertices to Ry, connect one of them to the
old vertex, and leave the other one independent.

e Sage n+1: To get R,,11, add 2** independent vertices to R,,, where a,, is the number of
vertices in fR,,. Connect each new vertex with old vertices, such that the neighborhood
sets realize all possible subsets of vertices in fR,,.

Finally R = [ J;Z, R
Note 13.6.

e Property (4) follows easily from this definition: if U,V < fR,,, then one of the vertices
added in the next stage satisfies the property.

e Asabove, if a,, is the number of vertices in fR,,, this defines an integer sequence: a; = 1
and a,.1 = a, + 2% for n > 1. More on this sequence at The online encyclopedia of
integer sequences.

Random Construction of R

Similar to the finite Erdés-Rényi graphs G(n, p) (see Lecture 4), they also studied a random
countably infinite graph. This graph has as vertex set N, and each edge is included indepen-
dently at random with probability p = 1/2. The following result states its relationtip with
the Rado graph.

Theorem 13.7. Almost surely, the countably infinite random graph is isomorphic to R.
Note 13.8.

e In this construction, the properties of Universality and One point extension follow
easily:

— Universality: Let H be a finite graph with n vertices. The probability that
H is not isomorphic to the subgraph induced by {1,2,...,n} in the Countably
Infinite Random Graph is some number ¢ < 1. The probability it is not the
subgraph induced by {n + 1,n + 2,...,2n} is also ¢ and is independent from
the first. So the probability it is not isomorphic to either one reduces to ¢>.
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Continuing this process, we see it must be isomorphic to some subgraph {am +
lL,am+2,...,(a+ 1)m} for some m € N with probability 1.

— One point extension: follows from property (4). Given U,V < N disjoint, for
any point x outside U and V', the probability it is adjacent to all vertices in U
and none in V' is some fixed positive number. Since this value is the same for all
x and independent, the probability that at least one point satisfies the property
must be 1.

e Almost surely, for any choice of the edge probability 0 < p < 1 we get the same graph
(up to isomorphisms).

Metric Geometry Point of View.

Recall we can turn (R intro a metric space by giving it the shortest path metric. Note that
the diameter of the Rado graph is 2: by property (4) for every pair of non-adjacent vertices,
there exists a third vertex adjacent to both. Hence the Rado graph takes only 0, 1 and 2
distances.

Note 13.9. The Rado graph is Universal for metric spaces (finite or countable) that only
realize distances 0, 1 and 2.

Exercise 13.10. Show that the clique complex of fR is contractible.

Note 13.11. The Rado graph has self similarity properties. For example, if we partition the
vertices of R into two disjoint sets U and V', then there exists an induced subgraph either
in U or V, that is isomorphic to fR.

Open Questions/Projects.

(1) Consider the filtration of R given by the first definition. Take the clique complex
(Vietoris-Rips complex) of this filtration. What is the persistence Homology? Does
it have any fractal-like structure?

(2) Given the same order on the vertices, let f(n) be the size of the longest clique within
the first n vertices. Similarly, let g(n) be the size of the largest independent set up
to vertex n. What is the asymptotic behaviour of f(n) and g(n) as n — ?

13.2. Recap: Observable Distance.
Recall that the metric d.,. defined on MY detects Levy families, because of its relation with
the observable diameter. We now prove proposition 10.20:

Proposition (10.20). For every X € MY,
doome( X, %) < ObSDIAm(X) < 2 deone (X, #).
Where ObsDiam(X') := inf max {x, ObsDiam, (X)}

k>0

Note 13.12. Recall the definition of dgopne:

Given a mm-space X = (X,dy, pux), let ox : [ = [0,1] — X be a parametrization, i.e. a
map such that pxuL' = px. The pullback sends any 1-Lipschitz map f € Lip, (X, R) to a
measurable function % f = fopyx : (I,£') — (X, ux). Thus p%(Lip,(X,R)) c F(I,R),
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where F(I,R) is the set of all measurable functions from I to R, endowed with the Ky Fan
metric.

Thus, given two mm-spaces X, ) € MY, we defined

dCOTlC(X7 y) = L,D)i(niy dgF (@;{Llpl (Xa R))a SOEK/LIPI(Ya R)))

Where dgf is the Hausdorff Distance induced by the Ky Fan metric.

Note 13.13. Recall the Ky Fan metric:
For f,ge F(I,R), and € > 0 let

Qe) = Li({tel:|f{t) —g(t)] =¢}).
Then the Ky Fan metric is dxp = inf {¢ > 0: Q(¢) < &}.

Proposition 10.20. We just prove the first inequality: deyn.(X, *) < ObsDiam(X).
Assume ObsDiam, (&X') < ¢, for some € > 0. That means

sup  PartDiam;_, (fzpx) <e.
feLip, (X,R)

Fix any f € Lip;(X,R), so PartDiam(fxux) < €. By definition, there exists a set A. < R
with diam(A.) < e and (fgux(A:) = 1 — k. By letting a = inf(A.) and b = sup(A.), we get
an interval such that b —a < ¢ and fupux([a,b]) =1 — k.

On the other hand, note Lip,(x,R) = R. We claim the following expression, which can be
deduced from the definition of Hausdorff distance:

dgF (@;Llpl (X’ R), R) = sup lnf dKF(f’ C)'
feLip, (X,R) ¢€R

Take ¢ = (a + b)/2, so [a,b] < [c—g,c—I—g]. Thus faupx ([c—%,c+§]) > 1— Kk and
diam ([c— 5,c+ %]) < e. Then note

fonx (o= 5ie+5]) =nx{rex /@ —d <) z1-x
" x {xeX S f(x) —cf = g} < k < max(k,e/2)

px {m € X :|f(z) — ¢| = max(k, g)} < max(k,€/2)

So inf.er dir(f, c) < max(k,e/2), and this same holds for every f € Lip,(X,R). Then, if we
let ¢ — ObsDiam,(X), we get

deone(X, *) < max(k, ObsDiam, (X))
And since this inequality holds for all , taking the infimum proves the desired result. [

14. LECTURE 14. MARCH 4. SAMIR CHOWDHURY

Notes from a lecture given by Osman Okutan, based on results from Shioya’s book.
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14.1. Main result. Notation: S"(r) denotes the metric measure space with the following:
e standard n-dimensional sphere of radius r in R"*!
e 0" normalized Riemannian measure

e ~* standard k-dimensional Gaussian measure on R¥ with density function

1 =13
k _ 17T
d")/ = W@ 2 dx.
o I(r) = ¥([0,7]).
Theorem 14.1 (Theorem 2.21 in Shioya’s book). For any 0 < k < 1, we have:

(1)

1—«x

lim ObsDiam,(S"(v/n)) = PartDiam;_,(R, ") = 21 (

n—0o0 2

).

(2)
ObsDiam, (S"(1)) = O(n~"?).

Hence S™(1) is a Levy family.

14.2. Review of partial and observable diameter.
Definition 14.2. Let (X, d, u) be an mm-space.
e For a < 1, define

PartDiam, (X) := inf{diam(A) : A < X, u(A) = a}.

e For k > 0,

ObsDiam, (X) = sup{PartDiam;_, (R, fxu) : f : X — R 1-Lipschitz}.

e (X,), is called a Levy family if ObsDiam,(X,) — 0 as n — o for each 0 < k < 1.

Definition 14.3 (Lipschitz order). Let X,Y be mm-spaces. We say X is dominated by Y
and write X < Y if there exists a 1-Lipschitz function F' : Y — X such that Fupy = px.

Proposition 14.4 (Prop 2.18 in Shioya). Let X <Y, and let k > 0. Then,

(1)
PartDiam;_,(X) < PartDiam;_,(Y).

(2)
ObsDiam, (X) < PartDiam;_(X).

(3)
ObsDiam, (X) < ObsDiam,(Y').
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Proof. Fix F': Y — X 1-Lip such that Fupuy = px.

For the first assertion, take A € Y measurable such that py (A) = 1—x. Consider F(A) < X.
Then pux(F(A)) = py (F~(F(4) ))) py(A) =1 - k.

Also, diam(F'(A)) = diam(F'(A)) < diam(A).

Thus PartDiam;_(X) < diam(F(A)) < diam(A).

Infimizing over A, we get PartDiam;_,(X) < PartDiam;_.(Y").

For the second assertion, take f : X — R 1-Lip. Then (R, fxzdux) < X. Thus we have
PartDiam;_,(R, fxux) < PartDiam;_,(X).

Taking supremum over f, we get ObsDiam, (X) < PartDiam;_,(X).

For the third assertion, take f : X — R 1-Lip and define f:z foF. Then we have:
PartDiam;_, (R, fuux) = PartDiam; (R, f#uy) < ObsDiam,(Y).

Taking supremum over f, we get ObsDiam, (X) < ObsDiam,(Y).
U

Proposition 14.5 (Proposition 2.19 in Shioya). Let X = (X,d, u) be an mm-space. For
t>0, lettX = (X,td, ). Then ObsDiam, (tX) = t ObsDiam,(X).

14.3. Two statements for proving the main result. Notation: 7, : S"(y/n) — R*
denotes projection onto the first k coordinates.

Definition 14.6 (Convergence of measures). Let X be a metric space and let p, (i, )nen be
Borel measures. We say p,, weakly converges to p if

fim | e, - f Fdp
X

n—a0

for all continuous, bounded test functlons f.

We say u,, vaguely converges to p if the above condition holds for all continuous functions
with compact support.

Proposition 14.7 (Maxwell-Boltzmann distribution law). For d € Z=q, we have

- d(mpg)p(0")  dy”
1 d = )
e dx da

In particular, (7, )40") — Y~ weakly as n — oo.

Theorem 14.8 (Normal law in the way of Levy). Let f, = S™(y/n) — R forn € N be 1-Lip.
Assume that for a subsequence {f,,}, the pushforwards (f,,) 0™ converge vaguely to a Borel
measure o, on R.

If 0o, is not identically zero, then (R,0.) < (R,yY). In other words, there exists a : R — R
1-Lip such that ayy' = 0.
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Proof of Theorem 14.1. We start with the first assertion. Consider the projection map 7, ; :
S"(y/n) — R. We have:
ObsDiam,(S™(y/n)) = PartDiam;_ (R, (7,.1)%(c"))
lim inf ObsDiam,,(S™(y/n)) = lim inf PartDiam; (R, (7,1)4(c™)) (*)

n—0o0 n—0o0

= PartDiam;_, (R, 71)
)

Here the equality following (*) assumes that PartDiam is continuous with respect to weak
convergence of measures.

Now take f, : S™(4/n) — R 1-Lip such that ObsDiam, (S™(y/n)) ~ PartDiam;_.(R, (f,,)x(c™)).
Here ~ means the we take the quantities to be as close as we need.

11—k
2

=217

Pick a subsequence {f,,} such that
lim sup ObsDiam, (S"(y/n)) = lim PartDiam; (R, (f,.)%(c"))

n— 00 1—00

and (f,,)#(0") weakly converges to some oy, (which is nonzero by the above liminf calcula-
tion). Then

11—k

lim sup ObsDiam, (S™(y/n)) = PartDiam; .(R, 04,) < PartDiam; _.(R,~') = 2I7}(

n—00 2

).

The second part of the theorem follows from the first part and the rescaling property of
ObsDiam. 0

14.4. Proof of the Maxwell-Boltzmann distribution law. Consider the projection
T (S™(v/n)) — RE. We wish to show (m,x)x(0") — .
Now (7))~ () is isometric to the (n — k)-dimensional sphere with radius (n — |lz[32)"2.
Then we have:

d(mn ) 0" _ VOhn(m(®)) _ (n— |a]3)*>

de vol(5"(VR) (o — [lo]3) " dar

As n — oo, the latter converges to

[E
e 2 1 _l=13
= e 2,
12 (Qﬁ)k/Q

Spre 2 da

15. LECTURE 15. MARCH 6. OsSMAN OKUTAN

Notes from a lecture given by Kritika Singhal.
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15.1. The Box Distance.

Definition 15.1 (The Box Distance). Let X = (X,dy,pux) and Y = (Y, dy, py) be metric
measure spaces. Let I := [0,1) with the Lebesgue measure £. For A > 0, the box distance

o)(X,)) is defined by

oA (X, Y) :=1inf{e > 0:Fpx : [ — X, ¢y : I = Y such that(px)xL = ux, (¢y)zL = py,
31, < I measurable satisfying |y dx(t,s) — pydy (t,s)] < e Vi, s € [,
L(IE) < Xe}.

Theorem 15.2. oy is a complete metric on M¥, up to isomorphism of mm-spaces.

Proposition 15.3. o; > d.pe.

Example 15.4. 0,(S", S"*1) — 0 as n — o0. Note that for any € > 0, pgn+1((S™)€) — 1 as
n — .

Exercise 15.5. Estimate o,(S™, S™).

15.2. Estimates of Box Distance by Kei Funano.

Definition 15.6 (Uniformly distributed Borel probability measure). A Borel probability
measure 4 on a metric space X is called uniformly distributed if for each x and 2’ in X and
r >0,

p(B(x,r)) = n(B(',r)).

Lemma 15.7. Let (X,dx, px) and (Y, dy, py) be mm-spaces such that px and py are uni-
formly distributed Borel probability measures. Let vx(r) (resp. vy (r)) denote the measure of
a closed ball of radius r > 0 in X (resp. V). If vx(a+c) < (1 —c)vy(a/2) for some a,c >0
and ¢ < 1, then

Ell(X, Y) 2 C.

Proof. Suppose 01(X,Y) < ¢. Then there exists a compact subset T < [0, 1] and parameters
vx :[0,1] = X and ¢y : [0,1] — Y such that the following hold:

e L>1—c,

e ox|r and py|r are continuous,

e For all s and ¢t in T,

|dx (ex(s), ox(s)) — dy (v (s), oy ()] < e

Note that ¢x(7') is compact.

Let
I :=max{k e N: 3(p;)f_, € oy (T) such that B(p;,a/2) n B(p;,a/2) = & Vi, j distinct}.

Let {p1,...,m} € @y (T) such that for all distinct ¢ and j in {1,...,1},
B(pi,a/2) 0 B(pj,a/2) = &.
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We have,
l
U pl>a/2 ZMY pwa/Q )
= lyy(a/Z)
Therefore,
1
[ < .
vy (a/2)

We also have ¢y (T) < Ul_, By (p;, a).
Forie{l,...,l}, fix t; € T such that p; = py(t;). Then, we have the following:
Claim 15.8. ¢x(T) < | J._, Bx(¢x(t:),a + ¢).

Proof of Claim. Let x € ¢x(T'). There exists s, € T such that ¢x(s,) = x. There exists
kel,..., I such that dy(pk, py(s:)) < a, in other words dy (py (tx), ¥y (sz)) < a. Therefore,

dx (¢x(tr), ) = dx(ox(tr), px(sz)) < a+c.

This proves the claim. ([l
We obtain
| < S ix(Bx(px(t).a+ o)
px (px(T))
_y vx(a + ) vx(a+c)
px(ex(T)) = v (a/2)pux (px (1))
- vx(a+c) _ vx(a+c) '
vy (a/2)L(T) — vy(a/2)(1—c)
This is a contradiction. Therefore, 0;(X,Y) > c. O

Theorem 15.9 (Bishop-Gromov volume comparison theorem). Let M be a complete n-
dimensional Riemannian manifold such that Ricyy = (n—1)K. Let M} be the n-dimensional
simply connected space of sectional curvature K. Then, for any p in M and px in My, we

have

volu (B(p, 7))
volary (B(pr, 7))
is non-increasing on (0,00) and as consequence

volyr (B(p, 7)) < volur (B(pxk, 7)) Vr > 0.

Lemma 15.10. Let M (resp. N) be an m-dimensional (resp. n-dimensional) compact
Riemannian manifold having a uniformly distributed Riemannian volume measure. Assume
that Ricps = (m — 1)K > 0 and Ricy > 0. Let ay := vol(N)/vol(S™). If 0 < ¢ < 1 is such
that

p(r) :=

(1 = )nan(K1)™2T((m + 1)/2)T(n/2)
m2m+ipem=1T(m/2)I'((n + 1)/2)
and cv/K, < 7, then o, (M,N) = C.

cn—m
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Proof. For r > 0, et vy (r) = pp(B(z, 7)) for x € M and vy (r) = un(B(y,r)) for y € N.
By Bishop-Gromov volume comparison theorem, we have
var(ce/2) = pu(Bu(z, ¢/2))
~ vol(By(w,c/2))

vol(M)
vol(Bug, (7./2)) _volgsmty (e L
vol(Mz) vol(Sm)L St '

Since cv/K; < 7, if 6 € [0, cy/K1/2], then c € [0, 7/2] and sin§ > 20/7. Hence,
VOl(Sm—l) Cm(Kl)m/2 om—1

vule/2) 2 vol(S™)  2mm  qm1’
S
Hnee 27T(n+1)/2
vol(5™) = T((n+1)/2)
, we get
m 1om/2
or(c/2) > T'((m+1)/2) ™K,

L(m/2)  o2mam 2
Let K5 > 0 be such that Ricy = (n — 1)Ky > 0. We have
vol(By(y, 2¢)) _ vol(Barg, (y,2c))

vn(2¢) = vol(V) N vol(V)
n—1 2cvV Ko
= vol(S"™) J sin" ! 0dp
ay (Ks)"2vol(S™) J,

vol(S™1) (2¢)"(K2)™?  (2¢)"7™*T((n + 1)/2)

vol(S") nay(K)"? — nayt®+D/2T(n/2)

Hence,
vn(2¢) < (1 = c)vp(e/2).
By letting a = ¢ in Lemma 15.7, we get
o0 (M,N) = c.
O

Proposition 15.11. Let (ng);, and (my);; be sequences of natural numbers such that
ne < ark, my < cok and |ng — my| = csk for some c1,ca,¢c3 > 0, for all k € N. Then, both
lim infy_, o, 01(S™, S™*) and liminfy_,,, o, (CP™, CP™*) are greater than or equal to

min(2_cl/c3ﬂ-—c2/c3 , 2—02/037T—C1/03 ) )

Proof. Without loss of generality we can assume that n; > my, for all £ € N. Since 0 < ¢ < 1,
Mk L ek Substituting n = ny, m = my, we obtain

(1 = c)yngI'((mg + 1)/2)T(ng/2)

S (1= eg-ak-ig-etn_L0w/2)
mk2nk+17rmkflr(mk/2)r((nk + 1)/2) =

m T((ng + 1)/2)°
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If

1

cak
< (1 =c)ynpl(ng/2) \ ° ge1/ea p(—cafes) +(1/k)
2myl((ng +1)/2)

we get o1 (S™, S™) > c.

l—cnp  D(ng/2) a5
(2 %MWW+M®> —lask— o

For k large enough, we have

1

cak
2—01/632—62/C3 —c< (1 —C Ny F(le/Q)/ )) 3 2_01/0371—%;24}3%‘
2

2 2my D((ng + 1)

This completes the proof for spheres. For CP", use the same strategy along with the fact
vol(CP™) = 7" /n!. O

16. LECTURE 16. MARCH 18TH. ZHENGCHAO WAN

Notes from a lecture given by Sunhyuk Lim.
Reference.
e Metric Measure Geometry, Section 2.6 (Shioya)
e Estimates of eigenvalues of the Laplacian by a reduced number of subsets (Funano)

Definition 16.1 (Separation Distance). Let X = (X, dx, px) be an metric measure space.
For any real numbers sg, s1, -+ ,sy > 0 with N > 1, we define the Separation Distance

' . . - Ao, -, An are Borel subsets of X such that
Sep(A; 5o, -+, s) = sup {I}g’ldX(Ai’Aj) ' px(A;) = s; foreach i =0,--- | N. } )

where for any subsets A, B ¢ X, dx(A, B) := infacapep dx(a,b).

Remark 16.2. sp < s{, -+, Sy < siy = Sep(&X;s0,- -+ ,5n) = Sep(X; 8, , sy)-

Notations: denote M as a closed and connected Riemannian manifold.

volaq
vol(M) *

e A, Laplacian operator on L*(M) n Lip(M).
e )\, (M): k-th eigenvalue of A y,.
Theorem 16.3.

o (M,dp,nvolyg): A mm-space with nvoly =

2
< .
\/)\k : mini:07... k Si
Proposition 16.4. For any mm-space X = (X, dx, ux) and any real number s > 0,
ObsDiamg,(X) < Sep(X; s, s).

SGP(M§ S0, 75k)
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Corollary 16.5. Let M be a closed connected Riemannian manifold, then
2
>\1 (M) ) '

Remark 16.6. If a set of closed connected Riemannian manifolds {M,, }*_, satisfies \;(M,,) /
w0 as n — o, then {M,}*_; is a Lévy family.

ObsDiamgs (M) < Sep(M; s, s) <

Fact 16.7. k-th eigenvalue of Laplacian of S" is k(k + n — 1). This implies that A(S") =
n / oasn / .

The following facts are used to prove Theorem 16.3.

Facts. Let M be a closed connected Riemannian manifold.
(1) 0= A(M) < A(M) < Aoy(M) < -+ /0.
(2) (Rayleigh Quotient) For each k,

A (M) =inf sup R(u),
L ugr\(0)

where L runs over all (k + 1)-dimensional Linear subspaces of L*(M) n Lip(M) and

_ HVU”;(HVOW) _ § o (Vu(z), Vu(z)ydnvol p(z)
[l 22 ot fu [u() vl ()

R(u)

where the gradient of a Lipschitz function exists almost everywhere because of Rademacher’s
theorem.

Proof of Theorem 16.3. Set s = Sep(X;sg,- -, sx) for simplicity. Assume s > 0. Choose
arbitrary r such that 0 < r < s. This implies, 3 Borel subsets Ag,---, A such that
nvolp(A4;) = s; for i = 0,--- , N, and dy(A;, A;) > r for i # j. Define

fi: M —-R
2 > max{1 — %dM(x, A, 0)

foreach ¢ =0, --- k.
Then f; satisfies the following properties.

(1) f; is 2-Lipschitz and f; € L*(nvoly).

(2) IVfill < 2.

(3) {fi}r, is orthogonal, i.e., {f;, fi)r2(mvol) = 0.

@) 1L = s
Then by taking Lg = span{fy,--- , fx}, one obtains

M(M) =inf sup R(u) < sup R(u).
L yer\{o} ueLo\{0}
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For any u € Ly\{0}, it can be written as u = agfo + - - - + ax fr. Hence

|ul|” = a2so + - - - + a2sp = (a2 + - + d2) ‘_minksi,

i=0,---

and

Therefore

O

Theorem 16.8 (Chung-Grigor'yan-Yau). There exists a universal constant ¢ > 0 satisfy-

ing the following property. Denote (M, i) as a closed connected and weighted Riemannian
manifold. Then

c 1
Sep((M, p); 89, ,8k) < ——"+ max log —.
p((M, p); 50 k) O, log o
Remark 16.9. Funano pointed out that Theorem 16.8 still holds for weighted compact
connected finite dimensional Alexandrov spaces.

Theorem 16.10. 3 universal constant ¢ > 0 satisfying the following property. Let (X, p)
be a weighted compact connected finite dimensional Alexandrov space satisfying CD(0, 00).

Then
k11

1
Sep((X, 1); 89, -+ ,8) < ——————+ max log —
p((X; 1); 50 ) O lee

for any |l < k.

This theorem arises in an effort to prove the following conjecture.

Conjecture 16.11. A\, 1 (X, u) < C - M\e(X, p).

To clarify the theorem, we will recall the definition of Alexandrov space and CD(0, o)
condition.

Definition 16.12 (Alexandrov space). For a complete geodesic space (X,dx) and K € R,
any geodesic triangle A(z,y, z) with perimeter < 2D, where Dy = % when K > 0 and
Dk = o when K < 0, has a comparison triangle A(Z, 7, z) in the model space Mg such
that dx(z,y) = dm, (Z,79),dx (2, 2) = dm, (T, 2),dx(2,y) = dpme(Z,9). We say (X, dx) is
an Alexandrov space of curvature bounded below by K € R, if for any geodesic triangle
A(z,y, z) and any point w € [y, z], we have dx(z,w) = dm, (Z,w), where w is a point on
the side [y, z] of the comparison triangle A(Z,y, z) such that dx(y, w) = dm, (g, w).

Cheeger has generalized the Laplacian operator to Alexandrov spaces.
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Definition 16.13 (Sturm). Given a metric space X = (X, dx, pux) and C € R, the curvature
dimension condition CD(C, o) means, for any vy, v; € P2(X) = (Pa2(X), dw,a), there exists
a minimal geodesic v; : [0, 1] — Po(X) such that

Ent,, () < (1 —t)Ent, (v) + tEnt, (1) — %(1 — t)td%m(yo, 1), Vt e [0,1],

where |
Ent, v := SXplngd,u if dv = pd,u
' 0 otherwise

Example 16.14. Let M be a Riemannian manifold. Then
Ricpm = C < M is CD(C, o).
Example 16.15. An n-dimensional Alexandrov space of curvature bounded below by K
satisfies CD((n — 1)K, o).
The following is the key Lemma of proving Theorem 16.10.

Lemma 16.16. Let X' be a weighted finite dimensional Alexandrov space of CD(0,00). If
(X, n) satisfies the follwoing for any s > 0 and some D > 0

1 1
SGp((X,/L), Sy, S ) S 'log_

S~ 7 D §

(k+1)—times

then we have .
Sep((X, 1); s, ,5) < = -log =

S~ 7 D s

k—times

for any s > 0 with a universal constant ¢ > 0.

17. LECTURE 17. MARCH 25TH. PAUL DUNCAN

This lecture followed the first three sections of the expository paper on SLE of Kager and
Nienhuis. This paper also contains useful appendices with background material. Lawler’s
summer school notes are also useful, particularly for examples.

18. LECTURE 20. APRIL 8. MARIO GOMEZ

This lecture was based on the paper “Convergence in distribution of random metric measure
spaces (A-coalescent measure trees)” by Greven, Pfaffelhauer and Winter
(https://link.springer.com/content /pdf/10.1007%2Fs00440-008-0169-3).

A common theme of recent lectures was using a continuous object to study a discrete random
space. That is how, for example, the Continuum Random Tree emerged from studying loop-
erased or loop-free graphs. A technical device used in these constructions is embedding trees
into ¢, and studying convergence within that metric space. This idea inspires the topic of
today’s paper. The authors study convergence of mm-spaces without using this particular
embedding.

The paper achieves this via the Gromov-Prokhorov metric (Definition 5.1). This turns out


https://arxiv.org/abs/math-ph/0312056
http://pi.math.cornell.edu/~cpss/2011/lawler-notes.pdf
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to be a complete and separable metric that metrizes the Gromov-weak topology (Definition
2.8). An important result is Theorem 2, the characterization of pre-compactness. Given a
set of mm-spaces, they informally describe pre-compactness via two conditions. First, the
spaces in the set should put most of its mass in subspaces of a uniformly bounded diameter;
second, the mass of the points that have small mass around them is small. They claim that
the conditions involved in the Theorem are reasonably easy to calculate, and they use them
in Section 4 by an example involving A-coalescent trees (this was not covered in lecture).
Notable sections ommited from the lecture are 4, 7, 8, and the appendix. As mentioned
above, Section 4 exemplifies the definitions using trees. Sections 7 and 8 are the technical
details needed to prove Theorem 2. The Appendix studies other metrics that are equivalent
to Gromov-Prokhorov.

19. LECTURE 21. APRIL 10. Woo0JIN KIiM
See Appendix A.10 for Woojin’s handwritten notes. The main sources for Woojin’s presen-
tation are the following:

e “Introduction to Stochastic Processes”, 2nd edition by Gregory F. Lawler: This book
provides an easy introduction to Brownian motions in R".

e (Results for d = 2) Cover times for Brownian motion and random walks in two dimen-
sions http://annals.math.princeton.edu/wp-content/uploads/annals-v160-n2-p02.
pdf

e (Results for d = 3) Brownian Motion on Compact Manifolds: Cover Time and Late
Points https://projecteuclid.org/euclid.ejp/1464037588

e A Brief Introduction to Brownian Motion on a Riemannian Manifold https://www.
math.kyoto-u.ac. jp/probability/sympo/PSS03abstract.pdf

20. LECTURE 23. APRIL 17. LING ZHOU AND ZHENGCHAO WAN

The lecture followed Section 9.1, 9.2, 9.3, 9.5 of Metric Measure Geometry by Takashi Shioya,
https://arxiv.org/abs/1410.0428.

21. LECTURE 24. APRIL 22ND. GUSTAVO
See the Appendix A.15 for handwritten notes of the talk (including the Proof of the theorem
we didn’t have time to cover). Here is the list of references used:
e “A January 2005 Invitation to Random Groups” by Ollivier.
e “Asymptotic invariants of infinite groups” by Gromov.

e “Notes on word hyperbolic groups” by Alonso, Brady, Cooper, Ferlini, Lustig, Miha-
lik, Shapiro and Short.

e “A sharper threshold for random groups at density one-half” by Duchin, Jankiewicz,
Kilmer, Lelievre, Mackay and Sanchez.


http://annals.math.princeton.edu/wp-content/uploads/annals-v160-n2-p02.pdf
http://annals.math.princeton.edu/wp-content/uploads/annals-v160-n2-p02.pdf
https://projecteuclid.org/euclid.ejp/1464037588
https://www.math.kyoto-u.ac.jp/probability/sympo/PSS03abstract.pdf
https://www.math.kyoto-u.ac.jp/probability/sympo/PSS03abstract.pdf
https://arxiv.org/abs/1410.0428
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APPENDIX A. HANDWRITTEN NOTES
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