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Write (vs/k) = the category of f.d. vector spaces over a field k.

Traditional picture

A finite (1-dim) persistence module of length n can be represented as a
functor M : n → (vs/k) where n = {1 → 2 → 3 → · · · → n} is the
categorical representation of the totally ordered set {1 < 2 < 3 < · · · < n}.

Gabriel’s theorem yields a decomposition of M into a direct sum of interval
submodules (blocks). Each interval submodule may be further written as a
direct sum of indecomposeable interval submodules of the form [i, j] having
dimension one at each i ≤ k ≤ j. The resulting decomposition of M is
unique up to permutation of the factors.

A consequence of this is that the moduli space of isomorphism classes
of 1-dim length n persistence modules is discrete, and moreover that any
isomorphism class is completely determined by the barcodes computed from
the above decomposition.

For more complicated underlying categories - even small 2-dim persistence
modules - the corresponding moduli space of isom classes is much more
topologically complex (certainly not discrete), and most modules indexed
by such categories are not tame or even weakly tame (a distinction explained
below).
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Four questions

Let C denote an arbitrary small category. A C-module is defined as a
functor M : (vs/k) → C. This a vast generalization beyond the case
C = n. Natural questions to ask, then are:

Q1 Do the analogues of blocks exist for general C-modules, and are they
computable?

Q2 What is the correct notion of (weakly) “tame” in this more general
setting?

Q3 Is there an obstruction theory to determine when a C-module is (weakly)
tame?

Q4 When M is not (weakly) tame, is there a way to approximate it by
one that is?

Results

There are roughly three main parts to the framework needed to answer
these questions.



The local structure

Associated to any C-module is a bi-closed multi-flag F(M) (defined below)
referred to as its local structure. In most cases of interest (e.g., if C is any
finite category and k a finite field), M has stable local structure. From
this structure one is able to recover (in a basis-free manner) the blocks of
M indexed on the set of admissible subcategories of C, whose direct sum
comprises the weakly tame cover WT C(M) of M , also a C-module. This
(weakly) tame cover exists regardless of whether or not M itself is tame.
Each block may be expressed as a direct sum of indecomposable blocks
when the nerve N(C) is simply-connected. In the very special case C is
the categorical representation of a finite totally ordered set, this construc-
tion recovers the interval submodule decomposition of a finite persistence
module.

General position

For C-modules with stable local structure, there exists a morphism of multi-
flags

p : F(WTC (M))→ F(M)

and the obstruction to this being an isomorphism is precisely measured by
two types of general position that exist for the local structure; one associ-
ated to morphisms and one associated to objects. When the local structure
F(M) is in general position w.r.t. the morphisms of M , the induced map
p∗ of associated graded objects is an isomorphism. If, in addition, F(M)
is in general position at all of the objects of M , then p itself is an isomo-
morphism of multi-flags.

Inner product modules

Finally, if the C-module M admits an inner product, then p is induced
by a morphism of C-modules p′ : T (M) → M (i.e., p = F(p′)). In this
case T (M) can be viewed as the closest approximation to M by a tame C-
module. As before, when F(M) is in general position w.r.t. all morphisms,
p′ induces an isomorphism of associated graded local structures. In this

case, p′ induces an isomorphism of C-modules T (M)
∼=−→ M ⇔ F(M) is in

general position at all objects ⇔ M itself is tame. Thus, in the presence
of an inner product, the numerical general position vectors (for the set
of morphisms and objects respectively) provide a complete set of discrete
numerical invariants to M being tame.



General position

A flag in a vector space V consists of a finite sequence of proper inclusions
beginning at {0} and ending at V :

W := {Wi}0≤i≤n = {{0} = W0 ⊂ W1 ⊂ W2 ⊂ · · · ⊂ Wm = V }

We relax this structure in two different ways. Let Sub(V ) denote the poset
category of subspaces of V and inclusions of such.

• A semi-flag is a functor F : m→ Sub(V ) for some m. More generally

• a multi-flag of V is a collection F = {Wα ⊂ V } of subspaces of V
containing {0}, V , partially ordered by inclusion, and closed under
intersection. It need not be finite.

Assume now that V is equipped with an inner product. Given an element
W ⊆ V of a multi-flag F of V , let S(W ) := {U ∈ F | U ( W} be the

elements of F that are proper subsets of W , and let SS(W ) =
∑

U∈S(W )

U .

Then we write

WF := (SS(W ) ⊂ W )⊥ , WF = W/SS(W ) (1)

Definition 1. For an IP-space V and multi-flag F in V , the associated
graded of F is the set of subspaces F∗ := {WF | W ∈ F}. We say that F
is in general position iff V can be written as a direct sum of the elements

of F∗: V ∼=
⊕

WF∈F∗

WF .

We also define the set of subquotients

F∗ := {WF | WF ∈ F∗}

The projection map WF → WF is an isomorphism of vector spaces for
each WF , and the association WF 7→ WF induces an isomorphism of sets

F∗
∼=−→ F∗. Some of the results below are most naturally formulated in

terms of the associated graded of subquotients F∗.



[Note: F∗ := {WF | W ∈ F}, is a set, not a multi-set. In other words we
do not count multiplicities; a single element WF of F∗ may occur as the
relative orthogonal complement of more than one element of the multi-flag
F .]

Proposition 1. For any multi-flag F of an IP-space V ,
∑

WF∈F∗

dim(WF) ≥

dim(V ). Moreover the two are equal iff F is in general position.

Definition 2. The excess of a multi-flag F of an IP-space V is e(F) :=[ ∑
WF∈F∗

dim(WF)

]
− dim(V ).

Corollary 1. For any multi-flag F , e(F) ≥ 0 and e(F) = 0 iff F is in
general position.

Lemma 1. If Gi, i = 1, 2 are two semi-flags in the inner product space V
and F is the smallest multi-flag containing G1 and G2 (in other words, it
is the multi-flag generated by these two semi-flags), then F is in general
position.

On the other hand, there are simple examples of multi-flags which are not
- in fact cannot be - in general position, as the following illustrates.

Example 1. Let R ∼= Wi ⊂ R2 be three 1-dimensional subspaces of R2

intersecting in the origin, and the F be the multi-flag generated by this
data. Then F is not in general position.

[Note: This illustrates the distinction between a configuration of subspaces
being of finite type (having finitely many isomorphism classes of configu-
rations), and the stronger property of tameness (the multi-flag generated
by the subspaces is in general position).]

Given an arbitrary collection of subspaces T = {Wα} of V , the multi-flag
generated by T is the smallest multi-flag containing each element of T . It
can be constructed as the closure of T under the operations i) inclusion of
{0}, V and ii) taking finite intersections.



If F is a multi-flag of V , G a multi-flag of W , a morphism of multi-flags
(L, f) : F → G consists of

• a linear map from L : V → W and

• a map of posets f : F → G such that

• for each U ∈ F , L(U) ⊆ f(U).

{multi-flags} will denote the category of multi-flags and morphisms of
such. A morphism (L, f) of multi-flags is closed if for each U ∈ F , L(U) =
f(U). In this case the inclusion of f is superfluous, and we will often write
the morphism simply as L. L is inverse-closed if L−1(U ′) ∈ F for every
U ′ ∈ G. It is bi-closed if it is both closed and inverse-closed.

If L : V → W is a linear map of vector spaces and F is a multi-flag of
V , the multi-flag generated by {L(U) | U ∈ F} ∪ {W} is a multi-flag of
W which we denote by L(F) (or F pushed forward by L). In the other
direction, if G is a multi-flag of W , we write L−1[G] for the multi-flag
{L−1[U ] | U ∈ G} ∪ {{0}} of V (i.e., G pulled back by L; as intersections
are preserved under taking inverse images, this will be a multi-flag once we

include - if needed - {0}). L defines morphisms of multi-flags F (L,ι)−−→ L(F),

L−1[G]
(L,ι′)−−−→ G; however only the former need be closed, and neither need

be bi-closed. The bi-closure of L (with respect to the multi-flags F and G)
is formed inductively as follows:

• Set F0 = F , G0 = G;

• For n ≥ 0 let Fn+1 be the multi-flag generated by Fn and L−1(Gn);

• For n ≥ 1 let Gn be the multi-flag generated by Gn−1 and L(Fn);

• Let F∞ = lim−→Fn,G∞ = lim−→Gn.

Then L : F∞ → G∞ is a biclosed morphism of multi-flags. F∞ and G∞
are the smallest multi-flags containing F and G respectively for which
the linear transformation L induces a bi-closed morphism of multi-flags
L : F∞ → G∞.

Let L : F → G be an inverse-closed morphism of multiflags. Then the
induced graded map L−1∗ : G∗ → F∗ is, in general, a multi-function, as
the cardinality #{L−1∗ (WG)} may be arbitrarily large for a given WG ∈ G∗
without some restriction on the morphism or the multiflags.



Definition 3. An inverse-closed morphism L : F → G is said to be in
general position if #{L−1∗ (WG)} ≤ 1 for all W ∈ G∗.

Alternatively, L is in general position if L−1∗ defines a function on the image
of L∗ : F∗ → G∗. Let α be the function on non-negative integers given by
α(0) = α(1) = 0;α(n) = n− 1 for n ≥ 2.

Definition 4. Let L : F → G be an inverse-closed morphism of multi-flags.
The excess of L, denoted e(L), is

e(L) :=

 ∑
WG∈G∗

α
(
#{L−1∗ (WG)}

)
As with multi-flags, the excess of a morphism provides a numerical invari-
ant measuring the degree to which it fails to be in general position.

Proposition 2. An inverse-closed morphism of multi-flags L : F → G is
in general position iff e(L) = 0. Moreover, if L1 : F → G, L2 : G → H
are closed morphisms, and Li is in general position for i = 1, 2, then so is
L2 ◦ L1.

Inner products

(WIP/k) = category w/ objects inner product (IP)-spaces and morphisms
linear transformations (but no compatibility is required with respect to the
inner product structures on the domain and range);
(PIP/k) = wide partial subcategory of (WIP/k) whose morphisms L :

(V,< , >V ) → (W,< , >W ) are partial isometries - L̃ : ker(L)⊥ → W is

an isometric embedding, where L̃ is the restriction of L to ker(L)⊥.

A weak inner product on M is a factorization M : C → (WIP/k)
pwip−−→

(vs/k), and a WIPC-module is a C-module M equipped with a weak
inner product. An inner product on M is a further factorization through a
subcategory D ⊂ (PIP/k), and an IPC-module is a C-module M equipped
with a an inner product.

A C-module M always admits a (non-unique) weak inner product, while
there are obstructions to admitting an actual inner product.



The local structure

For aWIPC-moduleM a multi-flag of M is a functor F : C → {multi-flags}
which assigns

• to each x ∈ obj(C) a multi-flag F (x) of M(x);

• to each φxy : M(x)→M(y) a morphism of multi-flags F (x)→ F (y)

The trivial multi-flag F0 of M assigns to each x ∈ obj(C) the multi-flag
{{0},M(x)} of M(x). A multi-flag on M is closed resp. inverse-closed
resp. bi-closed if that property holds for each morphism in the module.

AWIPC-module M determines a multi-flag on M called the local structure
F(M) of M , defined recursively at each x ∈ obj(C) as follows: let S1(x)
denote the set of morphisms of C originating at x, and S2(x) the set of
morphisms terminating at x, x ∈ obj(C) (note that both sets contain Idx :
x→ x). Then

LS1 F0(M)(x) = the multi-flag of M(x) generated by

{ker(φxy : M(x)→M(y))}φxy∈S1(x)∪{im(φzx : M(z)→M(x)}φzx∈S2(x);

LS2 For n ≥ 0, Fn+1(M)(x) = the multi-flag of M(x) generated by

LS2.1 φ−1xy [W ] ⊂M(x), where W ∈ Fn(M)(y) and φxy ∈ S1(x);

LS2.2 φzx[W ] ⊂M(x), where W ∈ Fn(M)(z) and φzx ∈ S2(x);

LS3 F(M)(x) = lim−→Fn(M)(x).

More generally, starting with a multi-flag F on M , the local structure of M
relative to F is arrived at by starting in LS1 with the multi-flag generated
(at each object x) by F0(M)(x) and F (x). The resulting direct limit is
denoted FF (M). The local structure of M (without superscript) is the
local structure of M relative to the trivial multi-flag on M .

Proposition 3. For any multi-flag F on M , FF (M) is the smallest bi-
closed multi-flag on M containing both F0(M) and F .

Definition 5. The local structure of a WIPC-module M is the functor
F(M), which associates to each vertex x ∈ obj(C) the multi-flag F(M)(x).



Definition 6. The local structure on M is locally stable at x ∈ obj(C) iff
there exists N = Nx such that Fn(M)(x) � Fn+1(M)(x) is the identity
map whenever n ≥ N . It is stable if it is locally stable at each object. It is
strongly stable if for all finite multi-flags F on M there exists N = N(F )
such that FF (M)(x) = FF

N (M)(x) for all x ∈ obj(C).

Theorem 1. Let M be a WIPC-module with stable local structure. Then
for all x, y, z ∈ obj(C), W ∈ F(M)(x), φzx : M(z) → M(x), and φxy :
M(x)→M(y)

1. either φxy(WF) = {0}, or φxy : WF
∼=−→ φxy(WF) = φxy(W )F , the

subquotient in the associated graded F(M)∗(y) induced by φxy(W );

2. either im(φzx)∩WF = {0}, or for each UF ∈
(
φ−1zx [W ]

)
F ⊂ F(M)∗(z),

φzx : UF
∼=−→ WF .

We will use the notion of general position, discussed above, to define excess.

o-excess (excess on objects) The object-excess, or o-excess of a WIPC-
module M is

eo(M) =
∑

x∈obj(C)

e(F(M)(x))

We say F(M) is in general position at the object x iff F(M)(x) is in general
position as defined above; in other words if e(F(M)(x)) = 0. Then F(M)
is in objectwise general position (without restriction) iff eo(M) = 0; in other
words, if it is in general position at all objects x ∈ obj(C).
m-excess (excess on morphisms) The morphism-excess, or m-excess of a
WIPC-module M is

em(M) =
∑

φxy∈Hom(C)

e(φxy)

A morphism φzx is in general position iff the multi-function of associated
graded sets φ−1zx : F(M)∗(x)→ F(M)∗(z) is actually a function. Globally,
it follows from Proposition 2 that

Corollary 2. For a C-module M , em(M) = 0 iff every morphism of M is
in general position.



Note that as M(x) is finite-dimensional for each x ∈ obj(C), F(M)(x) must
be locally stable at x if it is in general position (in fact, general position is
a much stronger requirement).

If M is a C-module without any additional structure, a multi-flag on M is
a multi-flag on M equipped with an arbitrary WIPC-structure. Differing
choices of weak inner product on M affect the choice of relative orthogonal
complements appearing in the associated graded at each object. However
the constructions in LS1, LS2, and LS3 are independent of the choice of
inner product, as are the definitions of excess and stability at an object
and also for the module as a whole. So the results stated above forWIPC-
modules apply equally well to C-modules.

Given a WIPC-module M , the associated graded objects F(M)∗ and the
isomorphic F(M)∗ may be viewed as a C-set; namely a functor F(M)∗ ∼=
F(M)∗ : C → {sets}. This perspective is occasionally useful.

Assume now that M is equipped with an IPC structure. In this case
all of the morphisms φxy : M(x) → M(y) are partial isometries which
map the relative orthogonal complement WF = (SS(W ) ⊂ W )⊥ ⊂ M(x)
compatibly to SS(φxy(W )) ⊂ φxy(W ))⊥ ⊂M(y) by a map which is either
0 or an isometry, by the same argument appearing in the proof of Theorem
1. A similar analysis applies for inverse images. Consequently, we can lift
the above from subquotients to orthogonal complements.

Theorem 2. Let M be an IPC-module with stable local structure. Then
for all x, y, z ∈ obj(C), W ∈ F(M)(x), φzx : M(z) → M(x), and φxy :
M(x)→M(y)

1. either φxy(WF) = {0}, or φxy : WF
∼=−→ φxy(WF) = φxy(W )F ;

2. either im(φzx) ∩WF = {0}, or for each element UF ∈
(
φ−1zx [W ]

)
F ⊂

F(M)∗(z), φzx : UF
∼=−→ WF .



Main results

Blocks and generalized bar codes

For a connected category C let Γ = Γ(C) be its oriented graph. A subgraph
Γ′ ⊂ Γ will be called admissible if

• it is connected;

• it is pathwise full: if v1e1v2e2 . . . vk−1ek−1vk is an oriented path in
Γ′ connecting v1 and vk, and (v1 = w1)e

′
1w2e

′
2 . . . wl−1e

′
l−1(wl = vk)

is any other oriented path in Γ connecting v1 and vk then the path
v1 = w1e

′
1w2e

′
2 . . . wl−1e

′
l−1wl is also in Γ′.

Any admissible subgraph Γ′ of Γ determines a unique subcategory C ′ ⊂ C
for which Γ(C ′) = Γ′, and we will call a subcategory C ′ ⊂ C admissible if
Γ(C ′) is an admissible subgraph of Γ(C). If M ′ ⊂ M is a sub-C-module of
the C-module M , its support will refer to the full subcategory C(M ′) ⊂ C
generated by {x ∈ obj(C) | M ′(x) 6= {0}}. It is easily seen that being a
submodule of M (rather than just a collection of subspaces indexed on the
objects of C) implies that the support of M ′, if connected, is an admissible
subcatgory of C in the above sense. A block is a sub-C-module M ′ of M for

which φxy : M ′(x)
∼=−→ M ′(y) whenever x, y ∈ obj(C(M ′)) (any morphism

between non-zero vertex spaces of M ′ is an isomorphism). Finally, M ′ is a
generalized barcode (GBC) for M if it is a block where dim(M ′(x)) = 1 for
all x ∈ obj(C(M ′)).

A C-module M is said to be weakly tame iff it can be expressed as a direct
sum of blocks. It is strongly tame or simply tame if, in addition, each of
those blocks may be further decomposed as a direct sum of GBCs.



The (weakly) tame cover

Assume M is a WIPC-module with stable local structure. Suppose W ∈
F(M)(x) with 0 6= WF ∈ F(M)∗(x). Writing WF as Vx we define the set
S(WF)x of WIPC ′ modules N : C ′ →WIP where:

1. C ′ is an admissible subcategory of C containing the object x;

2. N(x) = Vx, and N(y) ∈ F(M)∗(y) for y ∈ obj(C ′);

3. For each morphism φyz ∈ hom(C ′), φyz : N(y)
∼=−→ N(z);

4. N is closed in the following sense:

• If φyz ∈ hom(C) with z ∈ obj(C ′) andN(z) ∈ im(φyz : F(M)∗(y)→
F(M)∗(z)) then y ∈ obj(C ′);
• If φyz ∈ hom(C ′) with y ∈ obj(C ′) and N(y) ∈ F(M)∗(y) maps

isomorphically to its image in F(M)∗(z) under φyz, then z ∈
obj(C ′).

5. S(WF)x contains all modules satisfying the above four properties.

An element N ∈ S(WF)x admits the following alternative description:

• It is a C ′-block, with C ′ as above in 1.;

• It admits a unique extension Ñ : C → WIP which assigns to each
y ∈ obj(C)\obj(C ′) the trivial space {0}

• F(N)∗(y) = {{0}, N(y)} for each y ∈ obj(C ′)

• ∃ morphisms of C-sets F(Ñ)∗ � F(M)∗, F(M)∗ � F(Ñ)∗ whose
composition is the identity, and which for each y ∈ obj(C ′) sends the

element N(y) ∈ F(Ñ)∗(y) to N(y) ∈ F(M)∗(y), then back to itself.

We are not claiming Ñ is a summand of M , or even a submodule, because
without extra structure such as that provided by an inner product we may
not be able to compatibly lift either of these maps of associated graded
C-sets back to the modules themselves.



Define the set

SF(M)∗ =

 ∐
x∈objC

 ∐
06=WF∈F(M)∗(x)

S(WF)x

/∼ (2)

where the equivalence relation is given by S(WF)x 3 N ∼ N ′ ∈ S(W ′F)y
iff there is an equality of WIPC-module extensions

Ñ = Ñ ′ : C → WIP

Let AD(C) denote the set of admissible subcategories of C. For each C ′ ∈
AD(C) let

WT C(M)(C ′) =
⊕

N∈SF(M)∗
supp(N)=C′

Ñ

be the direct sum of the C-extensions of all the elements of SF(M)∗ with
support C ′. By construction, this is a C ′-block in the sense defined above.
The weakly tame cover of M is

WT C(M) =
⊕

C′∈AD(C)

WT C(M)(C ′) : C → (vs/k)

it is a weakly tame C-module that encodes the block structure of M regard-
less of whether or not M itself may be decomposed as direct sum of blocks.
There is a canonical projection of associated graded local structures. For
by construction

F(WT C(M))∗ =

 ∐
C′∈AD(C)

 ∐
N∈SF(M)∗
supp(N)=C′

F(Ñ)∗\{0}


∐{0}

yielding a projection

F(WT C(M))∗
P (M)∗:=

⋃
ιÑ−−−−−−−−→→ F(M)∗

where for each Ñ , ι(Ñ) : F(Ñ)∗\{0} � F(Ñ)∗ � F(M)∗ is the natu-
ral inclusion noted above, and the union is over the indexing set {C ′ ∈
AD(C)} × {N ∈ SF(M)∗, supp(N) = C ′}.

Lemma 2. If em(M) = 0 (that is, if every morphism of M is in general
position), then P (M)∗ is an isomorphism.



The tame cover

We now assume that M admits an IPC-structure. As seen in Theorem 2,
such structure allows us to uniformly replace subquotients with submod-
ules, and F(−) with F(−). We wish to describe the effect of this lifting on
the construction of WT C(M).

As before let W ∈ F(M)(x) with 0 6= WF ∈ F(M)∗(x). Now instead let
Vx = WF . We define the set S(WF)x of Vx-based IPC ′ modules N : C ′ →
IP where:

1. C ′ is an admissible subcategory of C containing the object x;

2. N(x) = Vx, and N(y) ∈ F(M)∗(y) for y ∈ obj(C ′);

3. For each morphism φyz ∈ hom(C ′), φyz : N(y)
∼=−→ N(z);

4. N is closed in the following sense:

• If φyz ∈ hom(C) with z ∈ obj(C ′) andN(z) ∈ im(φyz : F(M)∗(y)→
F(M)∗(z)) then y ∈ obj(C ′);
• If φyz ∈ hom(C ′) with y ∈ obj(C ′) and N(y) ∈ F(M)∗(y) maps

isomorphically to its image in F(M)∗(z) under φyz, then z ∈
obj(C ′).

5. S(WF)x contains all modules satisfying the above four properties.

Again, N ∈ S(WF)x admits the following alternative description:

• It is a C ′-block, with C ′ as above in 1.;

• It admits a unique extension to an M -submodule Ñ : C → IP which
assigns to each y ∈ obj(C)\obj(C ′) the trivial space {0}

• F(N)∗(y) = {{0}, N(y)} for each y ∈ obj(C ′)

• There are morphisms of C-sets F(Ñ)∗ � F(M)∗, F(M)∗ � F(Ñ)∗
whose composition is the identity, and which for each y ∈ obj(C ′)
sends the element N(y) ∈ F(Ñ)∗(y) to N(y) ∈ F(M)∗(y), then back
to itself.



Define the set

SF(M)∗ =

 ∐
x∈objC

 ∐
0 6=WF∈F(M)∗(x)

S(WF)x

/∼ (3)

where the equivalence relation is given by S(WF)x 3 N ∼ N ′ ∈ S(W ′
F)y

iff there is an equality of IPC-module extensions

Ñ = Ñ ′ : C → IP

The weakly tame inner product cover of the IPC-module M is then con-
structed in analogy with before; one first defines the IPC ′-block

WT IPC(M)(C ′) =
⊕

N∈SF(M)∗
supp(N)=C′

Ñ

Then the weakly tame IP-cover of M is

WT IPC(M) =
⊕

C′∈AD(C)

WT IPC(M)(C ′) : C → (IP )

it is a weakly tame IPC-module that encodes the block structure of M , just
as in the case of WIPC-modules. However, now the inner product struc-
ture allows us to construct a map of C-modules. Precisely the inclusion of
C-modules Ñ ↪→M for each N above yields a C-module surjection

P̃ (M) :WT IPC(M) �M

which then induces a surjection of multi-flags P (M) : F(WT IPC(M)) �
F(M) as well as a surjection on associated graded objects

P (M)∗ : F(WT IPC(M))∗ � F(M)∗

Lemma 3. If em(M) = 0, P (M)∗ is an isomorphism.

Lemma 4. If em(M) = eo(M) = 0 then P̃ (M) is an isomorphim.



Summary

Theorem 3. Associated to anyWIPC-module M is a weakly tameWIPC-
module WT C(M) - the weakly tame cover of M . This cover satisfies the
properties

• the construction is functorial in M ;

• there is a canonical and functorial projection of associated graded sets

P (M)∗ : F(WT C(M))∗ � F(M)∗;

• P (M)∗ is an isomorphism when em(M) = 0;

• when C is h-free, the weakly tame module WT C(M) is tame - it
decomposes as a direct sum of generalized bar codes.

If M admits an IP-structure, then the subquotients used in the construc-
tion of WPC(M) may be realized as submodules of M , and the same con-
struction applied to this family of lifts yields a weakly tame IPC-module
WT IPC(M) satisfying

• the construction is functorial in M (with respect to IPC-module mor-
phisms);

• there is a canonical and functorial projection of C-modules

P̃ (M) :WT IPC(M) �M ;

which induces a surjection of multi-flags P (M) : F(WT IPC(M)) �
F(M) and therefore a surjection of associated graded sets

P (M)∗ : F(WT IPC(M))∗ � F(M)∗

which agrees with the construction of P (M)∗ for WIPC-modules;

• P (M) is an isomophism when em(M) = 0;

• If em(M) = eo(M) = 0, then P̃ (M) itself is an isomorphism of weakly
tame IPC-modules; moreover if M is a weakly tame IPC-module
then em(M) = eo(M) = 0 and P̃ (M) is a IPC-module isomorphism.

• when C is h-free, the weakly tame module WT IPC(M) is tame - it
decomposes as a direct sum of generalized bar codes.



At least in the case of IPC-modules, the arguments resulting in this theo-
rem not only provide the complete obstruction to the module being tame,
they also identify the obstructions themselves as a set of discrete secondary
isomorphism invariants of the module. For a set S a Z+-valued S-vector
will refer to a function f : S → Z+.

Corollary 3. Given an IPC-module M , the

• Z+-valued obj(C)-vector eo(M) : obj(C)→ Z+, eo(M)(x) := eo(M)(x)
and the

• Z+-valued hom(C)-vector eo(M) : hom(C) → Z+, em(M)(φxy) :=
em(M)(φxy)

are C-module isomorphism invariants of M which are both identically zero
iff M is weakly tame.



Some open questions

[Q1 ] What is the natural (correct?) notion of homotopy equivalence for
C-modules?

[Q2 ] For an appropriate notion of h.e., is every C-module homotopic to
one admitting an inner product structure?

[Q3 ] What is the precise obstruction to admitting an inner product?
(second part talk will discuss this a bit)

[Q4 ] Is there a reasonable theory of characteristic classes for C-modules?
(some ideas here will be touched on in second talk).


